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The emergence of cloud-based storage services is opening up new avenues in data exchange and data
dissemination. This has amplified the interest in right-protection mechanisms to establish ownership in
the event of data leakage. Current right-protection technologies, however, rarely provide strong guarantees
on dataset utility after the protection process. This work presents techniques that explicitly address this
topic and provably preserve the outcome of certain mining operations. In particular, we take special care to
guarantee that the outcome of hierarchical clustering operations remains the same before and after right
protection. Our approach considers all prevalent hierarchical clustering variants: single-, complete-, and
average-linkage. We imprint the ownership in a dataset using watermarking principles, and we derive tight
bounds on the expansion/contraction of distances incurred by the process. We leverage our analysis to design
fast algorithms for right protection without exhaustively searching the vast design space. Finally, because
the right-protection process introduces a user-tunable distortion on the dataset, we explore the possibility
of using this mechanism for data obfuscation. We quantify the tradeoff between obfuscation and utility for
spatiotemporal datasets and discover very favorable characteristics of the process. An additional advantage
is that when one is interested in both right-protecting and obfuscating the original data values, the proposed
mechanism can accomplish both tasks simultaneously.
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1. INTRODUCTION

Data exchange and data sharing have become an inherent part of business and aca-
demic efforts. Both practices encourage scientific enquiry, ease validation of research ef-
forts, and maximize transparency. As such, data sharing and data publishing are recog-
nized as important productivity catalysts in diverse research efforts. To offer a concrete
example, it is widely recognized that initiatives such as the Human Genome Project
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land; email: vva@zurich.ibm.com; J. Schneider, ABB Corporate Research, Segelhofstr. 1K, Baden, Switzer-
land; email: johannes.schneider@ch.abb.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1556-4681/2015/04-ART23 $15.00

DOI: http://dx.doi.org/10.1145/2700403

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 3, Article 23, Publication date: April 2015.

http://dx.doi.org/10.1145/2700403
http://dx.doi.org/10.1145/2700403


23:2 M. Vlachos et al.

[HGP 2013], which advocated data sharing, led to “rapid scientific breakthroughs that
otherwise would not have occurred.”1 Recently, even fields that viewed data sharing
through a negative prism (e.g., the banking industry) have promoted the establish-
ment of consortia to ease data exchange [Cope and Antonini 2008]. Owing to the high
availability of cloud-based services in the near future, similar initiatives are projected
to experience a surge in demand, as attested in many recent studies [Geambasu et al.
2009; Mont et al. 2012; Faniel and Zimmerman 2011].

Data owners nonetheless need also maintain principal rights over the shared
datasets, which in many cases have been obtained after laborious procedures. This
work presents a protection mechanism that can deliver detectable evidence on the
legal ownership of a shared dataset without compromising its usability for a class
of mining operations. To achieve this, we guarantee that important distance-based
relationships between the dataset objects remain unaltered.

We embed ownership evidence using watermarking techniques. Watermarking has
emerged over the years as a successful method for establishing data progeny. It has been
used extensively in many multimedia applications, on image, video, and audio data.
Traditional watermarking techniques focus on a single data object and are not tailored
for preserving relationships between multiple objects. In that sense, our technique
augments and strengthens existing watermarking methodologies. Our goal is twofold:
to guarantee right-protection and, at the same time, preserve the original relationships
between the dataset objects. Having accomplished this, any learning or retrieval task
that depends on the preserved structural properties will remain undistorted even after
the watermark application.

In this work, we explicitly show how to preserve Hierarchical Clustering (HC). HC is a
popular knowledge extraction tool because it can visually communicate the similarity
between objects and groups of objects. Because of its descriptive power and ease of
implementation, it is a valuable tool in many disciplines, including:

—Biology and bioinformatics, for the construction of phylogenetic trees between species
[Ludwig and Klenk 2001].

—Natural sciences, for the taxonomic categorization of plants or animals based on their
similarity to previously categorized objects [Sickle 1997].

—Business analytics and marketing, for performing customer base segmentation and
aiding the discovery of common customer profiles [Žiberna and Žabkar 2003].

Our objective is to maximize the knowledge we can garner from the watermarked data.
Here, we give provable guarantees of identical outcome for HC algorithms on the orig-
inal and watermarked dataset. To achieve this, we provide a theoretical analysis of
the distance distortion due to watermarking. We derive tight bounds on the expan-
sion/contraction of distances caused by multiplicative watermarking techniques. We
exploit these results to engineer fast watermarking variants that drastically prune the
parameter search space compared to the exhaustive algorithms.

2. OVERVIEW OF OUR APPROACH

Our goal is to discover how to right-protect a dataset so that the dendrogram resulting
from the HC after the right-protection is isomorphic to the one on the original data
(see Figure 1). This translates into studying with what watermark intensity to protect
the dataset so that important parts of the dataset graph are not distorted. We study
how to achieve this goal for the most common HC variants: single-, complete-, and
average-linkage.

1http://scientificdatasharing.com/about/.
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Fig. 1. Our goal is to guarantee “isomorphic” dendrograms before and after right-protection.

It is essential to discover the maximum watermark intensity for right-protection.
This provides assurances of better detectability and hence security for the right-
protection scheme. Therefore, we first study how (Euclidean) distances between the
objects are distorted as a parameter of the watermark embedding strength. This pro-
vides insight into designing fast variants of our algorithms that still guarantee HC
preservation but operate significantly faster than the exhaustive algorithms.

Our article is structured as follows: First, in Section 3.1 we describe how right-
protection can be materialized via a spread-spectrum watermarking approach. We
describe the threat model in Section 3.2, and we show how to detect the presence of
a watermark in Section 3.3. We describe single-, complete-, and average-linkage algo-
rithms and the necessary conditions to preserve them post-watermarking in Section 4.
Subsequently, in Section 5, we study the distortion of distances due to watermarking.
We provide a theorem that gives tight lower and upper bounds on the distance dis-
tortion. We use it to design faster HC-preservation algorithms that are based on the
bounds derived.

Because watermarking introduces a tunable distortion in a dataset, we also inves-
tigate its applicability for data obfuscation (i.e., for applications where one wishes to
mask the original data values (Section 6)). This could be, for example, when collecting
trajectories of users (e.g., from phones or sensors), where one wishes to perform mining
operations on the obfuscated user trajectories (i.e., on the data that do not reveal the
actual original positions). Our methodology from conception has been designed to con-
sider multidimensional time-series data; therefore, the applicability on spatio-temporal
trajectories (among other datasets) is immediate. We evaluate the privacy-utility trade-
off curve and show the viability of the right-protection technique as a data obfuscation
approach. Finally, Section 7 provides a comprehensive set of experiments that assess:

—the resilience of right-protection under common data transformations,
—the preservation of data utility using our right-protection scheme,
—the tradeoff between data utility and data distortion, and
—the computational savings introduced by our fast right-protection algorithms.

We conclude with a review of the related work and a summary of our findings.

3. RIGHT-PROTECTION THROUGH WATERMARKING

We commence by describing how watermarking techniques can embed a secret key (wa-
termark) on a collection of objects. We demonstrate the techniques for 2D sequence data
(image contours, trajectories, etc.). Subsequently, we show how to detect the watermark
using a correlation filter.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 3, Article 23, Publication date: April 2015.
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3.1. Watermark Embedding

Assume an object represented as a vector of complex numbers x = {x1, . . . , xn}, where
xk = ak + bki (i is the imaginary unit, i2 = −1), k = 1, . . . n. The real and imaginary
parts, ak and bk respectively, describe the coordinates of the k-th point of object x on the
imaginary plain. Such a model can describe data trajectories or even image contour
data that capture the perimeter coordinates of a shape.

We adapt a spread-spectrum approach [Cox et al. 1997]. This embeds the watermark
across multiple frequencies of each object and across multiple objects of the dataset. As
such, it renders the removal of the watermark particularly difficult without substan-
tially compromising data utility. An object x is mapped into the frequency domain using
its complex Fourier descriptors X = {X1, . . . , Xn}. The mapping from the space domain
to the frequency domain is described by the normalized discrete Fourier transform,
DFT (x) and its inverse, IDFT (X). Every coefficient Xj can be expressed as a function
of its magnitude δ j and phase φ j as Xj = δ jeφ j i. The watermark constitutes a piece
of secret information to be hidden inside each sequence. In our approach, we consider
the watermark to be a vector W ∈ {−1, 0,+1}n, which is embedded in all objects of the
dataset.

Definition 3.1. (Watermark Embedding (W, p)) Given are a sequence x ∈ C
n with

corresponding set of Fourier descriptors X, a watermark W ∈ R
n , and a power p ∈

[0, 1], which specifies the intensity of the watermark. A multiplicative watermark
embedding (W, p) generates a watermarked sequence x̂ by replacing the magnitudes
of each Fourier descriptor of x with a watermarked magnitude δ̂ j while not altering the
phases. In specific:

δ̂ j = δ j · (1 + pWj), φ̂ j = φ j,

and
X̂j = δ̂ jeφ̂ j i = (1 + pWj)Xj .

Using the modified magnitudes δ̂ j and the original phases φ j , we can revert from the
frequency domain to the space domain and obtain the watermarked sequence using the
inverse discrete Fourier transform (i.e., x̂ = IDFT (X̂)). An overview of the methodology
described is given in Figure 2.

The robustness of the watermark embedding depends on the choice of the position
of its nonzero values. We assume that the object is a member of a dataset. First, the
Fourier coefficients are calculated for each object, and their magnitudes are averaged
over the dataset. Then, we embed the watermark on the coefficients that exhibit some
of the largest average magnitudes. This makes the removal of the watermark difficult;
masking it out (e.g., by noise addition) would mean that important frequencies of the
dataset will be distorted and that its utility would be diminished. Figure 3 shows
the reconstruction of one object from a dataset when only some of the highest energy
coefficients are used. It is apparent that the high-energy coefficients capture important
characteristics of the dataset.

3.1.1. Watermark Choice. Given a dataset D and an even integer 2 ≤ l ≤ n, we focus
on the following class of watermarks:

Definition 3.2. (Class of watermarks Wl(D) with l non-zero elements, compatible
with dataset D) The class of watermarks with l non-zero elements, compatible with
dataset D, denoted by Wl(D), is the set of all W ∈ {−1, 0,+1}n that satisfy:

Wj =
{ 0 if j = 1 (DC component)

{−1, 1} if j �= 1 and μ j(D) is among the l largest μk(D)
0 otherwise

, (1)
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Fig. 2. Overview of the right-protection process.

Fig. 3. Object reconstruction for different number of Fourier coefficients that contain the highest energy.

where μk(D), k = 2, . . . , n is the average of the kth magnitudes over the database
(formally presented in Equation (2)), and

∑n
j=1 Wj = 0.

Note that in this definition we do not embed any part of the watermark in the first
Fourier descriptor, X1 (also called the DC component), but leave it intact. The DC
component captures the center of mass of object x and is therefore highly susceptible
to translational attacks. For example, if a part of the watermark were embedded on
the DC component of an object then a simple translation would shift the center of mass
of the object, thus rendering this part of the watermark useless without affecting the
general shape of the object at all.

In summary, we embed the watermark in the magnitudes of the Fourier descriptors
and leave the phases unchanged; we leave the DC component intact, and we watermark
the Fourier descriptors with the largest average magnitudes.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 3, Article 23, Publication date: April 2015.
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3.1.2. Resilience to Transformations. By construction, our right-protection mechanism
provides resilience to geometric data transformations, such as rotation, translation,
and scaling. Global object rotation is an intelligent attack because it distorts all co-
ordinates of the objects, but pairwise distances remain the same. However, rotation
in the frequency domain affects only the phases but not the magnitudes. Our water-
mark being embedded in the magnitude space will remain unaffected. Similarly, global
translation of all objects only distorts the DC component, in which no part of the wa-
termark was embedded. Scaling attacks can be addressed simply by normalizing all
objects/sequences appropriately before watermark detection.

3.2. Threat Model

A potential attacker does not have access to the original data, but has access to the
watermarked data and may modify them in an effort to remove the watermark. The
attacker may transform the data to the extent that their utility is not severely com-
promised (otherwise the attack is obvious). We assume that an attacker: (a) is knowl-
edgeable of the algorithm but not of the secret key; and (b) may distort the data using
geometric transformations, noise addition (in both time and frequency domains), or
data transcription (e.g., upsampling or downsampling).

3.3. Watermark Detection

We measure the probability of existence of a watermark by evaluating the correlation
between a tested watermark and the right-protected dataset. Measuring directly the
correlation between the watermark and the magnitudes of Fourier descriptors may
prove ineffective because the original level of the average of magnitudes acts as back-
ground noise, masking the embedded watermark we seek to detect. We address this
issue by explicitly recording the bias of average magnitudes before embedding the wa-
termark and removing it before the detection. We also record this bias vector along
with the watermark W , and both are used jointly as the key.

For a dataset D = {x(1), . . . , x(|D|)}, we denote as δ
(k)
j the magnitude of the kth Fourier

descriptor of object x(k) before watermarking. The average of the magnitudes of the jth
Fourier descriptor across all objects in D, denoted as μ j(D), is given by

μ j(D) := 1
|D|

|D|∑
k=1

δ
(k)
j . (2)

We measure the correlation between a watermarked dataset D̂ and watermark W as
follows:

χ (W, D̂) :=
(

μ(D̂) − μ(D)
μ(D)

)T

W,

where the division is element-wise, excluding elements where μ j(D) = 0. In other
words, we remove the bias of average magnitudes before computing the correlation. The
scheme enables a very effective detection of the watermark. We show briefly why: After
elementary algebraic calculations, the correlation between a dataset watermarked with
W and any other watermark W ′ is reduced to:

χ (W ′, D̂) = pWT W ′.

The quantity is maximized for W ′ = W , giving χ (W, D̂) = pl. So, for any W ′ �= W ,
χ (W ′, D̂) < χ (W, D̂).

Recall that μ(D) is part of the watermark (key). This results in a very secure protocol
because a malicious attacker may try to discover the embedded key by probing different
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On Data Publishing with Clustering Preservation 23:7

Fig. 4. One object from a handwritten dataset (hand dataset) for different embedding powers of the wa-
termark. Left: original object (p = 0). Middle: object distortion for p = 0.01. Right: object is more visibly
distorted when the watermark is embedded with p = 0.05, corresponding to a 5% relative distortion.

watermarks. However, the correlation depends on the vector μ(D), which the attacker
has no way of knowing without access to the nonwatermarked data.

Because the dataset may undergo a number of potential modifications (smoothing,
sampling, etc.), the correct key may not exhibit a perfect correlation with the dataset.
The watermark detector can be made more robust by using an appropriate threshold,
above which the key is considered as embedded. The threshold value can be derived
via a learning process by computing the correlation histograms when probing with
both correct and incorrect watermark keys. These distributions are Gaussians, and the
determining threshold can be set to the midpoint of these distributions. For additional
details on this process, consult also Lucchese et al. [2010].

3.3.1. Determining Ownership. To determine whether a user is the owner of a dataset,
both dataset and user key are required. Using the watermark detection process just
detailed, the test will only be successful with the owner’s original key (i.e., the embedded
watermark).

4. HIERARCHICAL CLUSTERING PRESERVATION

HC builds a nested hierarchy of groups of objects according to a given distance function.
This nested hierarchy is called a dendrogram (see Figure 1). A popular method of
building a dendrogram is to use an agglomerative “bottom-up” approach: each data
point starts in its own cluster, and pairs of clusters are merged iteratively until a single
cluster remains. There exist different functions for evaluating the distance between
clusters, leading to many variants of HC approaches, such as single-, complete-, or
average-linkage. We explain these in detail later and also show how to preserve them
postwatermarking.

Our right-protection scheme operates in such a way that important object distances
are preserved, leading to identical clustering structure before and after watermarking.
It is important to strike a balance among security (i.e., detectability of the watermark),
visual distortion of objects, and correctness of the clustering. Therefore, we seek to find
the maximum embedding power p∗ that does not distort the original dendrogram of
the objects.

In certain cases, it may be possible to embed a watermark with high intensity and
still maintain the dendrogram structure. This, however, may lead to a visible distortion
in an object’s shape. Figure 4 depicts how an object is distorted for increasingly larger
watermark embedding powers. Therefore, in practice, we set an upper limit on the
maximum allowed power (i.e., p∗ ∈ [pmin, pmax]). In our experiments, we used pmax =
0.01; therefore, we allow up to 1% relative distortion. This assures that objects before
and after watermarking will look virtually the same.

Here, we study HC preservation approaches that use the Euclidean distance between
objects. We can also view pairwise relationships between objects as the edges of a
complete graph. On this graph, each edge e = (x, y) connecting two objects x, y has
weight (or length) equal to their distance D(x, y). After right-protection, the edges of
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the dataset graph may change because the new distance of objects x, y watermarked
with power p will be D̂p(x, y). We want to ensure that important parts of the graph
remain the same.

An important observation is that the Euclidean distance with respect to the wa-
termark embedding power p is a parabola: D̂2

p(x, y) = ∑n
j=1 ‖(1 + pWj)(Xj − Yj)‖2.

For illustrations, see Figures 6 and 7. We capitalize on this observation to discover
lower and upper bounds on the watermark and HC distortion, which will be modeled
as lower or upper envelopes of the parabolas. These are explained in detail in the
upcoming sections.

The next three definitions formalize the goal of HC preservation.

Definition 4.1. (Dendrogram) A dendrogram over (D, D) is a triplet (T , M, l) where
T is a binary rooted tree, M : leaves(T ) → D is a bijection, and l : V (T ) → {0, . . . , h}
(for some integer h ≥ 0), such that (i) for every leaf node u ∈ V (T ), l(u) = 0 and (ii) if
(u, v) ∈ E(T ) then l(u) > l(v)). By E(T ) and V (T ), we denote the set of the edges and
the set of the vertices, respectively.

Definition 4.2. (Isomorphic Dendrograms) Dendrograms (T0, M0, l0) and (T1, M1, l1)
are (order) isomorphic, if there exists a graph isomorphism φ : V (T0) → V (T1) between
the two trees T0 and T1, such that ∀v, u ∈ V (T0): l0(u) < l0(v) ⇔ l1(φ(u)) < l1(φ(v)).

Definition 4.3. (HC Preservation Problem) Given a set of objects D and a range
of feasible powers [pmin, pmax], find the maximal embedding power p∗ such that the
dendrograms computed on D and D̂ are isomorphic.

Throughout this article, we use the notion of the distance between two clusters
defined in three different ways depending on the method used.

Definition 4.4. (Distance between Two Clusters) Given two sets of objects (clusters),
C1 and C2, we define:

—Ls(C1, C2) := minu∈C1,v∈C2 D(u, v),
—Lc(C1, C2) := maxu∈C1,v∈C2 D(u, v),
—La(C1, C2) := 1/(|C1| · |C2|)

∑
x∈C1,y∈C2

D(x, y).

To notate the same functions after watermarking with power p, the index p is added,
e.g., La

p(C1, C2).

4.1. Single-Linkage Clustering

Single-linkage HC operates as follows: Initially, each object belongs to its own cluster.
The two clusters with the smallest distance are merged, and the distances of the newly
formed cluster to the old ones are updated. The process is repeated until only one cluster
remains. Between two clusters, the distance function Ls is used. Algorithm 1 gives a
high-level description of the process. Note, that the naive algorithm requires O(n3)
runtime, given n objects. More efficient algorithms exist in the literature that leverage
additional data structures, such as priority queues or data structures for finding the
next-best-match. These effectively reduce the runtime to O(n2). One such algorithm is
SLINK [Sibson 1973].

To guarantee that the dataset after watermarking yields the same dendrogram, we
ensure that all mergers between clusters are the same and that they are also executed
in the same order. However, it is not important which objects between the clusters
lead to the merger (i.e., which edge on the distance graph is shortest), as long as the
same clusters are merged for both watermarked objects and nonwatermarked objects.
We wish to ensure that for every feasible watermark embedding power p, the shortest
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Fig. 5. All relevant distances when computing the merging M(4) of the clusters C(4). The feasible powers p
are those which ensure that the blue distance is shorter than all the dotted red ones.

ALGORITHM 1: Single-Linkage Algorithm
1: INPUTS: dataset D
2: OUTPUT: Clustering C(i), i ∈ [1, |D|]
3: C(1) := D {Each object is its own cluster}
4: for i = 1 → |D| − 1 do {repeat until one cluster remains}
5: Find clusters M(i) := {Cm1, Cm2} of minimum distance {L(Cm1, Cm2) = minC,C′∈C(i) L(C, C ′)}
6: C(i + 1) = C(i) \ M(i) ∪ {Cm1 ∪ Cm2} {Merge clusters}
7: end for

edge lies between the two merged clusters and not between any other two clusters.
Formally, if Cm1 and Cm2 are the clusters merged in the current step then:

p is feasible ⇔ ∀i with M(i) = {Cm1, Cm2}, (3)
Ls

p(Cm1, Cm2) ≤ min
C1,C2∈C(i)

C1 �=C2

Ls
p(C1, C2).

To get the feasible powers p for a merger M(i), defined by inequality in Equation (3),
one must determine for every p ∈ [pmin, pmax] whether the smaller distance value occurs
for the two merged clusters Cm1 and Cm2 and not for any other two clusters. This is
illustrated in an example depicted in Figure 5. Following Figure 5, we focus on M(4)
that merges the clusters Cm1 = ({A} ∪ {B}) ∪ ({C} ∪ {D}) = {A, B, C, D} and Cm2 = {E}
of the original data. On the righthand side of Figure 5, the distances involved are
shown. Thus, a feasible power p should ensure that the “solid” (blue) distance edge
(remember that this is the minimum of all the involved distances) of the clusters Cm1
and Cm2 is less than any “dotted” (ref) distance edge of any other combination. Here,
all the lines represent the possible graph edges. In terms of inequality Equation (3),
the solid edge belongs to the left-hand side and the dotted edges to the right-hand side
of the inequality.

Therefore, to discover the proper power p, we consider each edge e = (x, y) on the dis-
tance graph (see Figure 6). For a certain p, the value of the distance function of the left
side of Equation (3) is the minimum of the values of the “solid” (blue) parabola. All the
“dotted” (red) parabolas correspond to edges involved in the right side of Equation (3).
The feasible values of the power p are those that keep the value of the examined linkage
function less than the values of the other (“dotted”) relevant parabolas. All the other
values of the power should be eliminated because, otherwise, the resulting dendrogram
would not be isomorphic to the original one.
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Fig. 6. The feasible range of powers guaranteeing a merger of the two clusters {Ap, Bp, Cp, Dp} and {Ep}
in Figure 5. The edges between the merged clusters are given by solid lines. All other edges are shown as
dotted.

Fig. 7. Dashed line shows the distance function D̂p(x, y) for an edge e = (x, y). The solid line corresponds
to the lower envelope; that is, the minimum distance for every power p for a set of edges (e.g., between two
clusters). For single-linkage clustering only the minimum distance is relevant.

Analytically, this resorts to finding the lower envelope of a set of parabolas. The
lower envelope ENl (see Figure 7) corresponds to a sequence of interleaving edges e of
minimum distance and intersection points of the feasible powers p; that is,

ENl = (p0 = pmin, e0, p1, e1, p2, e2, . . . em, pmax),

where pi ∈ [pmin, pmax] is an intersection point of the parabolas for ei and ei+1 (i.e.,
D̂pi (ei) = D̂pi (ei+1)). One might compute a separate lower envelope for all constraints
on the left-hand side and right-hand side of inequality Equation (3) and then compare
the two envelopes to determine the feasible powers for a merger M(i). It is some-
what simpler to just build a single parabola containing all parabolas from the left-
and right-hand side of inequality Equation (3). We can achieve that very efficiently
using the algorithm presented in Devillers and Golin [1995] to compute the compound
envelope.

More precisely, using Algorithm 2, we iteratively compute a new envelope ENl using
all edges E in the prior envelope except the edges E′ (Line 8) that are between the
previously merged clusters Cm1 and Cm2. We go through all mergers (see Line 5) in
ascending order (i.e., let M(i) = {Cm1, Cm2} be the merger currently considered). We
compute the lower envelope ENl according to Devillers and Golin [1995] (Line 9). Then
we consider all edges e ∈ E′ that have been added to ENl (Line 10). If an edge e is not in
the envelope, then there are edges of smaller distance for every power p ∈ [pmin, pmax].
Thus, edge e has no influence on the feasible powers. It no longer has to be considered.
If edge e is part of ENl, say e corresponds to edge e j ∈ EN, then the range of powers
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[pj, pj+1] is feasible. This range [pj, pj+1] is added to the set of feasible power ranges
pRanges(M(i)). At the end of the algorithm (Line 15), we compute the intersection of
all pRanges(M(i)) to determine the maximum power p∗ that yields the same mergers
for watermarked and nonwatermarked data.

ALGORITHM 2: Single-Linkage Preservation Algorithm
1: INPUTS: dataset D, watermark W ∈ W(D), pmin, pmax
2: OUTPUT: p∗

3: den ← dendrogram on original data D, e.g., using SLINK [Sibson 1973]
4: E := {(u, v)|u, v ∈ D} {set of all edges}
5: for i = 1 → |D| − 1 do
6: C ← set of clusters before ith merger M(i) in den
7: {Cm1, Cm2} ← clusters merged at ith merger M(i) in den
8: E′ ← {(u, v)|u ∈ Cm1, v ∈ Cm2}
9: ENl := lower envelope ENl of edges E using Devillers and Golin [1995]
10: for all e j ∈ (E′ ∩ ENl) do {edges between the merged clusters that are in the envelope}
11: pRanges(M(i)) := pRanges(M(i)) ∪ [pj, pj+1]
12: end for
13: E := E \ E′ {Remove edges between merged clusters}
14: end for
15: p∗ = max{p ∈ (

⋂
1≤i<|D| pRanges(M(i)))

⋂
[pmin, pmax]}

Complexity: Construction of the single-linkage dendrogram requires O(|D|2) time
[Sibson 1973]. Computation of the lower envelope using O(|D|2) elements takes
O(|D|2 log |D|) using Devillers and Golin [1995]. When computing the lower envelope
ENl, we are aware of which edges e ∈ E′ are added between merged clusters; that is, the
intersection of edges E′ ∩ ENl (Line 10) does not add to the time complexity. Combining
this, the outer for loop (Line 5) runs at O(|D|3 log |D|). Computing the intersections
of feasible powers pRanges(M(i)) of individual mergers costs O(|D|2 log |D|): There are
in total (for all M(i) together) at most as many edges as intervals of feasible powers
[pj, pj+1], i.e., O(|D|2). Sorting the power intervals in each pRanges(M(i)) according to
the left end point and merging the different sorted intervals pRanges(M(i)) yields the
time complexity.

4.2. Complete Linkage Clustering

Now, we examine how to derive the maximum watermark embedding power p∗ that
maintains postwatermarking the result of complete-linkage HC. Our approach is sim-
ilar as that use din the single-linkage case: We need to discover which watermark
powers will not violate the original merging order of the clusters in the dendrogram.
The only difference is that under complete-linkage two clusters are merged accord-
ing to a different linkage function Lc. Under single-linkage, cluster distance depends
on the minimum object distance, whereas under complete-linkage, cluster distance is
evaluated as the maximum distance of their respective objects. For each step, the two
clusters with the smallest maximum distance are merged. Therefore, we have a min
max relationship: Between each pair of clusters we consider the maximum distance;
thus, we use all edges (object distances) between them to compute an upper envelope
(maximum distance parameterized by p). Out of these envelopes, we are interested
in the minimum distance of any upper envelope between any pair of clusters. This is
achieved by computing a lower envelope taking into account all upper envelopes. In
what follows, we describe this intuition more formally.
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Fig. 8. Preservation of complete-linkage dendrogram by watermarking (largest possible power p = 0.0221).

We define M(i), C(i), EN in the same way as in the previous section. Thus, if Cm1 and
Cm2 are the clusters merged in the current step, then:

p is feasible ⇔ ∀i with M(i) = {Cm1, Cm2}, (4)
Lc

p(Cm1, Cm2) ≤ min
C1 ,C2∈C(i)

C1 �=C2

Lc
p(C1, C2),

We have to deal with the min-max relationship due to the complete linkage criterion
expressed in inequalities in Equation (4); that is, merge the two clusters with minimum
maximum distance of two nodes. This requires us to maintain a set of upper envelopes
EN u( i.e., for each pair of clusters C1, C2 ∈ C, there is an envelope ENu(C1, C2) ∈ EN u).
To get the minimum maximum distance, we compute a lower envelope ENl for the
edges in the upper envelopes.

An overview of the process is given in Algorithm 3. Initially, a clustering of non-
watermarked objects is computed using the CLINK algorithm [Defays 1977]. We main-
tain a set of upper envelopes for any pair of clusters (i.e., EN u := {ENu(C1, C2)|C1, C2 ∈
C}). Computing the upper and lower envelope are equivalent problems, thus we can
use Devillers and Golin [1995] for lower envelopes with some adjustments.2 Originally,
when each object is a cluster, the upper envelope between two clusters is given by the
edge between the two objects (Line 4 of Algorithm 3). To get all feasible powers for
merger M(i) = {Cm1, Cm2}, we compute a lower envelope ENl consisting of the union
of all edges contained in any upper envelopes ENu(C1, C2) of any pair C1, C2 ∈ C. For
any edge e j between the merged clusters {Cm1, Cm2} that is also in the lower envelope
ENl (Line 12), we add the power range [pj, pj+1] for which edge e j is smallest to the
feasible powers pRanges(M(i)). After a merger M(i) = {Cm1, Cm2} all upper envelopes
between pairs containing either Cm1 or Cm2 must be adjusted to keep ENu up to date.

2For example, in Devillers and Golin [1995] Section 4, replace the lower envelope function F(x) = mini≤n pi(x)
by F(x) = maxi≤n pi(x). In Lemma 5 use Fi+1(x) = max(pi+1(x), Fi(x)).

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 3, Article 23, Publication date: April 2015.

https://www.researchgate.net/publication/220460070_An_Efficient_Algorithm_for_a_Complete_Link_Method?el=1_x_8&enrichId=rgreq-a7018b3e8578691f57eb54900a663404-XXX&enrichSource=Y292ZXJQYWdlOzI3NDQ1NTkwNDtBUzoyMTUxNTg5MjExNDIyNzJAMTQyODMwOTI5Mjk4Mg==


On Data Publishing with Clustering Preservation 23:13

We delete all upper envelopes of pairs involving any of two merged clusters Cm1 or Cm2
from ENu. Then a new upper envelope ENu(Cm1 ∪ Cm2, C) for each C ∈ C(i) \ {Cm1, Cm2}
is added to ENu. After having gone through all mergers i in ascending order, we finally
compute the intersection of all pRanges(M(i)) giving the maximum power p∗.

ALGORITHM 3: Complete-Linkage Preservation Algorithm
1: INPUTS: dataset D, watermark W ∈ W(D), pmin, pmax
2: OUTPUT: p∗

3: den ← dendrogram on original data D, e.g., using CLINK [Defays 1977]
4: ENu(u, v) := {pmin, e = (u, v), pmax} {upper envelope of one edge}
5: EN u := {ENu(u, v)|u, v ∈ D} {set of upper envelopes}
6: for i = 1 → (|D| − 1) do
7: C ← set of clusters before ith merger M(i) in den
8: {Cm1, Cm2} ← clusters merged at ith merger M(i) in den
9: /*– Compute feasible powers pRanges(M(i)) –*/
10: Compute lower envelope ENl consisting of all edges in the upper envelopes in ENu using

Devillers and Golin [1995]
11: E′ ← {(u, v)|u ∈ Cm1, v ∈ Cm2}
12: for all e j ∈ (E′ ∩ ENl) do {edges between the merged clusters that are in the envelope}
13: pRanges(M(i)) := pRanges(M(i)) ∪ [pj, pj+1]
14: end for
15: /*– Update upper envelopes EN u –*/
16: Remove {ENu(Cm1, C), ENu(Cm2, C)|C ∈ C} from ENu

17: for all C ∈ C \ {Cm1, Cm2} do
18: Compute envelopes for newly merged cluster Cm1 ∪ Cm2 and C to ENu(Cm1 ∪ Cm2, C)
19: end for
20: end for
21: p∗ = max{p ∈ (

⋂
1≤i<|D| pRanges(M(i)))

⋂
[pmin, pmax]}

Complexity: Construction of the complete-linkage dendrogram requires O(|D|2)
time [Defays 1977]. Computation of the lower envelope ENl using Devillers and
Golin [1995] (Line 10) costs O(|D|2 log |D|). When adding an edge e ∈ E′ to enve-
lope ENl, we immediately know whether the edge becomes part of ENl (or is too
large for all powers). Thus, determining the edges between merged clusters that are
part of the lower envelope (i.e., E′ ∩ ENl) (Line 12) causes no costs. In iteration i
of the for-loop (Line 6) there are |D| − i clusters remaining. Computing the upper
envelopes ENu requires deleting O(|D|) envelopes and adding at most O(|D|) upper en-
velopes. More precisely, the number of edges within upper envelope ENu(Cm1 ∪ Cm2, C)
with C ∈ C\{Cm1, Cm2} is given by |Cm1 ∪ Cm2||C|. Thus, the total number is given
by |Cm1 ∪ Cm2|

∑
C∈C |C|. Each object is in exactly one cluster (i.e.,

∑
C∈C |C| = |D|).

Therefore, |Cm1 ∪ Cm2|
∑

C∈C |C| ≤ |Cm1 ∪ Cm2||D| ≤ |D|2. The algorithm in Devillers
and Golin [1995] runs in O(|D|2 log |D|). Therefore the running time of the for-loop
(Line 6) is bounded by O(|D|3 log |D|). Computing the intersections of feasible powers
pRanges(M(i)) of individual mergers takes time O(|D|2 log |D|) as for Algorithm 2.

4.3. Average Linkage Clustering

To address cluster preservation under average-linkage we consider the modifications
that we have to make due to the different cluster distance function. For average-
linkage, cluster distance is determined by the function La. By definition, the average
distance La between two clusters is the sum of the distances of all edges divided by the
number of edges. Summing up parabolas and dividing them by a (fixed) number still
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yields a parabola. Therefore, the function La between any pair of clusters C1 and C2 is
a parabola of the form ap2 + bp + c for values a, b, c depending on the parabolas of the
edges between C1 and C2. To discover the maximal embedding power p between any
two clusters, we compute an envelope for the parabolas (distance parameterized by p)
between any pair of clusters, and there is one parabola per cluster pair.

The constraints and the definitions of M(i), C(i) can be stated in the same way as
before. To compute the feasible set of powers p for a merger M(i) = {Cm1, Cm2}, formally,

p is feasible ⇔ ∀i with M(i) = {Cm1, Cm2}, (5)
La

p(Cm1, Cm2) ≤ min
C1 ,C2∈C(i)

C1 �=C2

La
p(C1, C2),

requires us to compute the intersections of La
p(Cm1, Cm2) with all the parabolic distances

of the other pairs of clusters C1, C2.

ALGORITHM 4: Average-Linkage Preservation Algorithm
1: INPUTS: dataset D, watermark W ∈ W(D), pmin, pmax
2: OUTPUT: p∗

3: den ← dendrogram on original data D, e.g., using Murtagh [1984]
4: for i = 1 → (|D| − 1) do
5: C ← set of clusters before ith merger M(i) in den
6: {Cm1, Cm2} ← clusters merged at ith merger M(i) in den
7: /*– Compute feasible powers pRanges(M(i)) –*/
8: Compute lower envelope ENl consisting of all edges, i.e., one for each pair (C0, C1) with

C0, C1 ∈ C using Devillers and Golin [1995]
9: for all e j ∈ (e′ = (Cm1, Cm2) ∩ ENl) do {edges between the merged clusters that are in the

envelope}
10: pRanges(M(i)) := pRanges(M(i)) ∪ [pj, pj+1]
11: end for
12: end for
13: p∗ = max{p ∈ (

⋂
1≤i<|D| pRanges(M(i)))

⋂
[pmin, pmax]}

Complexity: Construction of the average-linkage dendrogram requires
O(|D|2 log |D|) time [Murtagh 1984]. Computing the linkage function La

p(C0, C1)
in terms of p between two clusters C0 and C1 requires time O(|C0||C1|). Before the first
merger, the computation of all pairwise distances between clusters takes time O(|D|2).
The time complexity for computation of the linkage function La

p(Cm1 ∪ Cm2, C) between
a merged cluster Cm1 ∪ Cm2 and all other clusters C ∈ C \ {Cm1, Cm2} can be bounded
as follows: |Cm1 ∪ Cm2|

∑
C∈C\{Cm1,Cm2} |C|. Since each object is in exactly one cluster, we

have
∑

C∈C |C| ≤ |D| and also |Cm1 ∪ Cm2| ≤ |D|, yielding |D|2 time to compute the
linkage function. Overall, there are O(|D|) mergers. Thus, the distance computations
take O(|D|3) time.

Computation of the lower envelope ENl using Devillers and Golin [1995] (Line 8)
takes O(|D|2 log |D|). To determine the powers between merged clusters {Cm1, Cm2}, we
intersect e′ = {Cm1, Cm2} ∩ ENl (Line 9); that is, we go through the edges e ∈ ENl

sequentially and compare each edge e ∈ ENl with e′, which requires time at most
O(|ENl|) ∈ O(|D|) since each cluster consists only of a single parabola. In iteration i of
the for-loop (Line 4) there are |D| − i clusters remaining. Therefore, the running time
of the for-loop (Line 4) is bounded by O(|D|3 log |D|). Computing the intersections of
feasible powers pRanges(M(i)) of individual mergers takes time O(|D|2 log |D|), as for
Algorithm 2.

ACM Transactions on Knowledge Discovery from Data, Vol. 9, No. 3, Article 23, Publication date: April 2015.



On Data Publishing with Clustering Preservation 23:15

Fig. 9. Two objects cannot get arbitrarily close or far after the watermark embedding. In this figure, we
represent objects as points for presentational purposes. To better illustrate the distortion bounds, objects
x̂, ŷ are globally translated so that x and x̂ coincide.

5. FAST ALGORITHMS

Here, we derive faster variants of the previous HC preservation algorithms. They are
based on a study of the distance distortion due to the multiplicative watermarking.

THEOREM 5.1. For any two watermarked objects x̂, ŷ ∈ D̂, their Euclidean distance
denoted as Dp(̂x, ŷ) is lower and upper bounded by the Euclidean distance of the non-
watermarked objects x, y ∈ D as follows:

(1 − p)D (x, y) ≤ Dp(̂x, ŷ) ≤ (1 + p)D (x, y).

Figure 9 illustrates the proof.

PROOF. Using Parseval’s theorem, the squared Euclidean distance can be expressed
in the time or frequency domain as D2(x, y) = ‖x − y‖2 = ‖X− Y‖2. The same objects x
and y after watermarking with power p have distance:

D̂2
p(x, y) = ‖x̂ − ŷ‖2 = ‖X̂ − Ŷ‖2 =

n∑
j=1

‖X̂j − Ŷ j‖2

=
n∑

j=1

‖(1 + pWj)Xj − (1 + pWj)Yj‖2 =
n∑

j=1

‖(1 + pWj)(Xj − Yj)‖2

However, because Wj ∈ {0, 1,−1}, we get the following bounds:

n∑
j=1

‖(1 − p)(Xj − Yj)‖2 ≤ D̂2
p(x, y) ≤

n∑
j=1

‖(1 + p)(Xj − Yj)‖2

(1 − p)2‖X − Y‖2 ≤ D̂2
p(x, y) ≤ (1 + p)2‖X − Y‖2

(1 − p)2 D2(x, y) ≤ D̂2
p(x, y) ≤ (1 + p)2 D2(x, y)

5.1. Tightness of Distance Bounds

The bounds are tight; that is, there exist distinct data points x and y such that
(1 − p)2 D2(x, y) = D̂2

p(x, y) and points x′, y′ such that (1 + p)2 D2(x′, y′) = D̂2
p(x′, y′).

First, we show how to construct the subspace containing points X, Y to match the lower
bound. Consider two points X = (X0, X1, . . .) and Y = (Y0, Y1, . . .) such that Xj = Yj for
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Wj ∈ {0, 1}. All remaining coordinates j with Wj = −1 are arbitrary. This gives:

D̂2
p(x, y) =

n∑
j=1

‖(1 + pWj)(Xj − Yj)‖2

=
n∑

j = 1
Wj ∈ {0, 1}

‖(1 + pWj)(Xj − Yj)‖2 +
n∑

j = 1
Wj = −1

‖(1 + pWj)(Xj − Yj)‖2

= (1 − p)2
n∑

j=1

‖(Xj − Yj)‖2 = (1 − p)2 D2(x, y)

The points X′, Y ′ to reach the upper bound are constructed analogously: X′
j = Y ′

j for
Wj ∈ {0,−1} and arbitrary coordinates Xj, Yj otherwise.

The inequality of Theorem 5.1 essentially hints on that fact that if we already have
an index that is built on the original non-right-protected data, we can use it to speed
up the search process because we can bound the watermarked distance as a parameter
of the original distance (which we can get using the index) and the embedding power p.

Namely, if for two edges e′ and e′′ we know that the upper bound for one of them
is lower than the lower bound for the other, then those two edges will not intersect.
Therefore, if for edges e′ and e′′ holds that:

(1 + pmax)D(e′) < (1 − pmax)D(e′′), or (1 + pmax)D(e′′) < (1 − pmax)D(e′);

then, using Theorem 5.1, we can be sure that edge e′ will be shorter than e′′ (or e′′
shorter than e′, respectively) for any feasible power p ∈ [0, pmax]. Thus, there is no need
to search for their intersection. This reduces significantly the number of quadratic
inequalities to be solved. After adding an edge e′ to the lower envelope in Algorithms 2,
3 and 4 [Devillers and Golin 1995] (e.g., Line 9 of Algorithm 2), we can therefore
avoid computing the intersection of edges e′ and e′′ to update the envelope (i.e., figure
out which edges to remove from the envelope due to the addition of e′). For the
example of Figure 5, after the computation of the lower envelopes (Figure 6), one can
avoid solving the quadratic inequality between Lp(G, F) = D̂p(G, F) and Lp(Cm1, F)
since the lower bound of the first is greater than the upper bound of the latter. An
illustration of this is given in Figure 10. In the experimental section that follows, we
show that the use of lower and upper bounds on the watermarked distance can lead
to a significant reduction of the search space that ranges from one to three orders of
magnitude.

5.2. Discussion

The foregoing analysis assumed the Euclidean distance for object comparison. How-
ever, it is easily transferable for other commonly used distance (or similarity) functions,
such as correlation or cosine similarity, which can be relegated to some normalized
Euclidean distance calculation (see, e.g., Qian et al. [2004] and Borgatti [2007]).

When dealing with nonlinear distance functions (e.g., Dynamic Time Warping
[DTW]), the existence of a closed-form analysis of the distance distortion due to
watermarking is largely unknown and represents an open topic for research. However,
because there are ways to upper/lower bound DTW using Euclidean distance on a
transformed space (space-bounding envelope [Vlachos et al. 2003]), such analysis may
be viable but resides outside the scope of the current work.
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Fig. 10. An example of the pruning achieved using the lower/upper bounds. We illustrate the case where
the upper bound of the edges between the merged clusters is lower than the edge of one of the other possible
pairs (also refer to Figures 5 and 6).

6. WATERMARKING AS PERTURBATION MECHANISM

Embedding a watermark in the dataset alters the original values, so it also provides a
data obfuscation method. Therefore, our methodology could also be applicable in cases
where one is interested in masking the original values but still wants to be able to mine
the resulting dataset [Xue et al. 2013]. Our technique inherently considers multidimen-
sional sequences, so it can be used without alterations for data obfuscation in spatiotem-
poral datasets. Today, such datasets are collected very easily from phones, GPS devices,
and the like that continuously collect the movements of individuals and vehicles. Anal-
ysis of such trajectory datasets holds great importance for many applications [Parent
et al. 2013], such as traffic analysis and optimization [Duffield and Grossglauser 2001]
and city planning [Song et al. 2010]. However, such datasets may need to be accord-
ingly altered before data release, for example, in cases when we wish to mask the exact
location of individuals [Wicker 2012]. Because the watermarking process adds noise to
the original data trajectory, the original values are not revealed, but the trajectory still
preserves to a high degree its overall pattern. So, it is still useful for further analysis.
The degree of distortion is controlled by the embedding power p of the watermark.

Our methodology discovers the maximum power p∗ that guarantees preservation
of HC after right-protection. The power p∗ is the one that maximizes obfuscation
and, at the same time, offers 100% utility preservation. If one wishes to offer better
obfuscation, then the watermark can be embedded with higher intensity. Then, of
course, utility does not remain at the 100% level, but this is a tradeoff that one has
to pay for the benefit of increased data masking. Note that a similar tradeoff also
exists between utility and data privacy/anonymization [Ghinita et al. 2009], a well-
understood concept in privacy-preserving data mining [Li and Li 2009; Aggarwal and
Yu 2008] and privacy-preserving data publishing [Fung et al. 2010; Xue et al. 2011].

However, there is an upside to the reduction in data utility. Because the watermark
is embedded with stronger intensity, it can be better detected under more destructive
transformational attacks on the right-protected dataset. In the experimental section,
we show that the watermark embedded with power p∗ is robustly detected under
a variety of attacks. Now, if the watermark is embedded with power p > p∗, then
naturally the detection is even more pronounced, or, in other words, the watermark
can be retrieved under more destructive data attacks (e.g., increased down-sampling
rates, removal of more objects, and so on).
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Therefore, when one is interested in both right-protecting and obfuscating a dataset,
the proposed methodology can achieve both simultaneously. The advantage of this is
not only that it is simpler, but, intuitively, it suggests that less noise has to be added to
ensure the same degree of dataset utility. As an example, assume that an institution
wishes to share its dataset. The requirements are to both alter the original values and
right-protect the dataset with at most a 5% relative distortion on the dataset. When
data obfuscation and watermarking are applied as separate processes, then part of
this 5% noise is allocated for the obfuscation process and part for the right-protection
process. Therefore, the watermark is always embedded with weaker intensity when
the two processes are separated.

In summary, the advantages of using watermarking methodology as a data obfusca-
tion process are the following:

(1) The right-protection is accomplished simultaneously without additional modifica-
tion.

(2) Right-protection is even more robust when the watermark is embedded with higher
intensity.

Here, we examine in more detail the metrics that we use to quantify data utility after
the right-protection, as well as the metric for distortion/obfuscation. We also quantify
the degree of the distortion via the parameters of the right-protection mechanism.

6.1. Utility Metric

To assess the utility of the data, we measure how well the HC clustering is preserved.
We quantify the similarity between two dendrograms using the confusion matrices
when forming k = 2, . . . |D| − 1 (i.e., when the dendrogram is cut at different hierar-
chical levels [Fowlkes and Mallows 1983]). Assume that, at a particular level of the
dendrogram, k clusters are formed. The k × k confusion matrix at position i, j has a
value mij , indicating the number of objects in common between the ith cluster of the
first dendrogram and the jth cluster of the second. So, at that particular level, we
define the association between the two clusterings to be:

Bk = Tk

√
PkQk, (6)

where

Tk =
k∑

i=1

k∑
j=1

m2
i j − |D|,

Pk =
k∑

i=1

⎛⎝ k∑
j=1

mij

⎞⎠ − |D|,

Qk =
k∑

j=1

(
k∑

i=1

mij

)
− |D|.

Bk depends both on topology and labeling of the objects and takes a value between
zero to one, the latter value when the confusion matrix has exactly k nonempty cells
(i.e., the two clusterings have identical labels and topologies). In Figure 11, we provide
an example of this utility metric.

We have to evaluate the clustering quality at all |D|−2 levels of the dendrogram (the
top level consisting of one cluster is the same), so the dendrogram similarity S(p) for
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Fig. 11. Two dendrograms and their similarity when cutting the dendrogram to form k = 2 clusters.

a given watermark power is the average of all the measures of association Bk; that is,

S(p) =
∑

k

Bk/(|D| − 2). (7)

We use this metric to compare the clustering using the original data D and the
clustering obtained using the right-protected data D̂. A value of 1 suggests identical
clusters of both datasets at every level of the hierarchy.

6.2. Obfuscation Metric

A watermarking scheme such as the one used by our right-protection methodology
distorts (obfuscates) the original data. The obfuscation can be imperceptible (low
watermark embedding powers) or perceptible (high watermark embedding powers).
When we are interested primarily in data obfuscation, we can afford we embed a
watermark with stronger intensity. We quantify the obfuscation using the relative
data distortion r before and after watermarking:

Definition 6.1. (Relative Data Distortion) The relative data distortion r measures
the average relative error of a distorted data point x̂ ∈ D̂ relative to the original data
point x ∈ D:

Dst(D, D̂) := 1
|D|

∑
x∈D

|x − x̂|
|x| (8)

Such a measure has also been used in other previous work on trajectories (e.g., Xue
et al. [2011]; Abul et al. [2008]). Essentially, this is a measure of information loss.
Other metrics used for location obfuscation can be found in Ardagna et al. [2007].

Note that this distortion metric could also potentially be used as a generic proxy
for measuring an upper bound on data privacy. We mention upper bound because,
to quantify data privacy, one should assume extra information about the application
at hand and about the background knowledge of an attacker [Wong et al. 2011]. For
example, a recent study notes that knowledge of the home and work location can
almost uniquely identify an individual [Golle and Partridge 2009]. Therefore, in a
dataset of spatiotemporal trajectories recording phone locations of users, the start
(home) and end (work) of the trajectory are particularly important. If the obfuscation
mechanism does not distort the beginning and end of the path in such a dataset, given
background information, privacy can still be compromised irrespective of the amount
of noise that is added. Other studies have also shown that knowledge of subparts
of a location-based trajectory may similarly function as quasi-identifiers [Terrovitis
and Mamoulis 2008]. Therefore, privacy really depends on the application and on
the background information that an attacker holds. Popular models for data privacy
include k-anonymity [Nergiz et al. 2009] and differential-privacy [Chen et al. 2011],
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among others. The presented obfuscation metric may provide useful indications on the
maximal and idealized degree of privacy that could be obtained using the presented
right-protection technique. However, here, we do not make claims on the privacy
achieved via our right-protection model, but only about its obfuscation capacity.

6.3. Obfuscation Introduced by Right-Protection

Using the previously presented watermark embedding (Section 3.1), we can distort
the original data. The process has two parameters: the randomly chosen watermark
W and the feasible power p∗, both of which are known only to the owner of the data.
The scheme adds a limited amount of noise to the data used to encode a watermark
W consisting of l bits distinct from 0. Understandably, the more information the
watermark contains, the more distortion can be expected. The amount of information
contained in a watermark depends on the number of l non-zero values Wj ∈ {−1, 1}.

Now, we quantify the relative distortion r(D, D̂) on the data. As described in Section 3,
we embed the watermark on the l high-energy frequencies. We assume that the energy
on the remaining n− l frequencies is negligible. This is true for real-world data, where
the energy is typically sharply concentrated in the largest coefficients [Mukherjee
et al. 2006]. Thus, after a renumbering of the indices,

||x − x̂|| = ||X − X̂|| =
⎛⎝ n∑

j=1

[Xj − X̂j]2

⎞⎠1/2

=
⎛⎝ n∑

j=1

[Xj − (1 + pWj)Xj]2

⎞⎠1/2

= p

⎛⎝ n∑
j=1

[Wj Xj]2

⎞⎠1/2

= p

⎛⎝ l∑
j=1

X2
j

⎞⎠1/2

� p||x||. (9)

Then, the relative distortion of the dataset is,

r(D, D̂) = 1
|D|

|D|∑
k=1

||xk − x̂k||
||xk|| � p. (10)

Here, we provide an illustrative example of the obfuscation-utility curve for a spa-
tiotemporal dataset and of the resulting distortion on one of the dataset trajectories.
The data consist of taxi movements in the city of Beijing. As shown in our analysis,
the obfuscation depends on the embedding power p, so we show one trajectory of the
dataset for increasing p values. Note that the utility of the whole dataset remains
at high levels even under larger relative distortions. We showcase obfuscation-utility
curves for additional datasets in the experimental section that follows.

7. EXPERIMENTAL EVALUATION

In this section, we evaluate the presented schemes. First, we verify that our right-
protection methodology discovers the maximum watermarking power that correctly
preserves the original dendrogram. Then, we compare the fast algorithms proposed in
Section 5 to their exhaustive counterparts of Section 4 in terms of number of operations.
We report major pruning of the search space. Next, the resilience of our scheme is
assessed against a broad range of potential attacks: geometric distortions, resampling,
and more. Finally, we present the utility-obfuscation curves for increasing intensities
of right-protection.
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Fig. 12. Obfuscation vs. utility for a spatiotemporal dataset (taxi-Beijing). On the right, we also depict the
distortion relative to the watermark embedding power p for one trajectory instance in the dataset.

Table I. Datasets Used in the Experiments

Name Data Type Total Data Points
nasdaq Stock Prices 500,000
taxiSF Taxi Traj. SF 2,580,000
taxiBeijing Taxi Traj. Beijing 1,499,893
skulls Image Contour 24,000
fish Image Contour 63,232
video1 Video-Tracking 22,500
video2 Video-Tracking 11,500
hand Handwritten 11,520

We test our methods on datasets from various application areas: mobility data (taxi
trajectories in Beijing [Yuan et al. 2011, 2010] and San Francisco [Piorkowski et al.
2009]), financial data (stock prices in the NASDAQ stock market), video-tracking data,
handwritten data, and image contour data from anthropology and natural sciences
(the latter datasets were obtained from Lucchese et al. [2010]). The characteristics
of our datasets are summarized in Table I and illustrated in Figures 13 and 14. All
experiments have been conducted on a 2.16GHz Intel CPU with 3GB RAM.

7.1. Preservation of Distance Relations

Here, we evaluate whether the single-, complete-, and average-linkage preservation
algorithms discover the correct embedding power for the watermark so that the den-
drograms, both on the original and watermarked data, remain isomorphic. This means
that both the tree structure and the order of the merger points M(i) are the same. A
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Fig. 13. Image shapes can also be treated as two-dimensional sequences by extracting the perimeter of a
shape.

Fig. 14. Data objects from the fish, video1, and taxiBeijing benchmark datasets.

Fig. 15. Dendrogram portion for the skulls dataset. Left: dendrogram for maximum discovered p∗ = 0.0221
is same as original. Right: for even slightly larger p = 0.0222, the dendrogram changes.

sample comparison of a dendrogram resulting from the complete linkage procedure of
the original data and of the watermarked data was presented in Figure 8. In Figure 15,
we show the distortion of the dendrogram that occurs when a watermark is embedded
with power p > p∗. Indeed, even a slightly increased value of the power results in
alterations in the resulting dendrogram. We report the maximal power p∗ that the
algorithms returned that resulted in all cases in total dendrogram preservation. The
same maximal embedding power was returned by both exhaustive and fast variants of
the algorithms. Table II summarizes our findings.

7.2. Comparison of Algorithms

Now we compare the efficiency of the fast dendrogram preservation algorithms. With
the use of the lower and upper bounds on the distance distortion, the fast variants can
eliminate many pairs of objects from examination. This reduction leads to solving fewer
quadratic inequalities in the progress of the algorithm. We record exactly how many
quadratic inequalities we need to solve with each algorithm. Note, that this is also a
CPU-agnostic measure and therefore does not depend on any runtime optimization.
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Table II. Maximal Watermarking Power p∗ ∈ [0, 0.01]

Single-Linkage p∗ Complete-Linkage p∗ Average-Linkage p∗

nasdaq 0.77 · 10−4 0.243 · 10−3 0.323 · 10−6

taxiSF 0.47 · 10−4 0.97 · 10−4 0.484 · 10−3

taxiBeijing 0.4 · 10−5 0.28 · 10−4 0.18 · 10−4

skulls 0.1 · 10−1 0.1 · 10−1 0.1 · 10−1

fish 0.229 · 10−3 0.122 · 10−3 0.371 · 10−3

video1 0.39 · 10−2 0.1 · 10−1 0.121 · 10−2

video2 0.1 · 10−1 0.1 · 10−1 0.1 · 10−1

hand 0.2271 · 10−2 0.116 · 10−3 0.409 · 10−3

The percentage of dendrogram preservation was 100% for all benchmarks.

Table III. Number of Quadratic Inequalities Solved for Different Datasets, Single Linkage

Dataset Single-Linkage Fast Single-Linkage Pruning
nasdaq 22,039,601 16,854 1,308×
taxiSF 23,032,154 5,993 3,843×
taxiBeijing 214,304,616 161,305 1,329×
skulls 770 16 48×
fish 2,895,694 8,425 344×
video1 637 23 28×
video2 2,311 40 58×
hand 129,377 976 133×

Table IV. Number of Quadratic Inequalities Solved for Different Datasets, Complete Linkage

Dataset Complete-Linkage Fast Complete-Linkage Pruning
nasdaq 21,187,434 36,280 584×
taxiSF 28,667,907 91,039 315×
taxiBeijing 322,436,544 393,970 818×
skulls 770 14 55×
fish 2,618,789 9,552 274×
video1 646 29 22×
video2 2,260 54 42×
hand 126,953 1,113 114×

Table III summarizes the results of single-linkage preservation. The pruning effi-
ciency is reported as the ratio of the number of inequalities solved by the exhaustive
algorithms compared to the fast algorithms. The use of the bounds on the distance dis-
tortion (Section 5) results in considerable reduction in terms of solved inequalities; up
to three orders of magnitude. Tables IV and V report the results of the same experiment
for the case of complete- and average-linkage preservation.

7.3. Resilience to Attacks

Here, we test the resiliency to potential attacks of the right-protection scheme.
We right-protect the dataset by inserting a watermark with the maximum allowed
embedding power that preserves the dendrogram (we test on the power that preserves
single-linkage clustering). We measure the embedded watermark’s detectability under
a series of attacks: addition of Gaussian noise in the space and in the frequency
domain, up- and down-sampling, and geometric transformations (rotation, translation,
scaling). Figure 16 depicts the ROC curves representing true- versus false-positive
rates. We also report the performance of a random baseline that randomly classifies
the dataset as having or not having the watermark embedded.
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Table V. Number of Quadratic Inequalities Solved for Different Datasets, Average Linkage

Dataset Average-Linkage Fast Average-Linkage Pruning
nasdaq 22,897,415 26,144 875×
taxiSF 27,880,050 6,678 4,174×
taxiBeijing 200,191,602 28,752 6,962×
skulls 665 2 333×
fish 2,511,250 1,157 2,170×
video1 546 17 32×
video2 2,002 22 91×
hand 121,396 181 670×

Fig. 16. ROC curves for watermark detection corresponding to geometric transformations, noise addition,
noise addition in the frequency domain, up-sampling, and down-sampling on different datasets.

We observe that our detection method works very effectively. It is more than four
orders of magnitude more effective than the random baseline. In addition, the graphs
exhibit a large area under the curve, suggesting high detectability and therefore high
resilience to attacks.

7.4. Obfuscation vs. Utility

Now we evaluate the efficacy of our right-protection methodology as a data obfuscation
method, particularly for larger embedding powers p of the watermark. In particular,
we allow p to be greater than 0.01 (or 1% relative distortion) and test for values as
large as p = 1. We compute the utility and obfuscation using the metrics of Section 6
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Fig. 17. Tradeoff curves between obfuscation and utility for average-linkage clustering and diverse datasets.
Observe that utility (orange line) is kept at consistently high levels even for large amounts of obfuscation.

for increasing embedding powers p. We investigated the tradeoff for all HC variants
(SLC, CLC and ALC). The results are similar for SLC, CLC and ALC, so we only show
the plots for ALC in Figure 17.

Each experiment computes both utility (dendrogram similarity before and after the
watermark embedding) and obfuscation (relative distortion) using 100 different water-
marks W of length l = 64 chosen uniformly at random for each power p. The tradeoff
curve captures the average value of all the different watermark embeddings.

The right-protection algorithm returns back the maximal embedding power of the
watermark p∗ that does not change the utility. Therefore, for p ∈ [0, p∗], we achieve the
maximum possible utility. Note that for all datasets there exists a range of embedding
powers that achieves utility of 100% in the sense that HC remains identical before
and after the right-protection process. For embedding powers greater than p∗, one can
no longer guarantee 100% preservation of utility. Of course, the average relative data
distortion is upper bounded by the embedding power p, as we saw in our analysis in
Section 6.3. We observe that the overall dataset utility after right-protection is always
kept at high levels, more than 70% for the majority of datasets, even for the maximal
value of p.
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What is interesting to note is that, for the larger datasets (e.g., Nasdaq and taxi
movements) that contain a lot of data objects, the rate of reduction in utility is slower
compared to the smaller datasets. Even for p = 1, or relative distortion of 100%, the
utility preservation is greater than 90%. This can be easily understood because larger
datasets automatically lead to bigger HC trees. Whereas the obfuscation process may
change relationships between lower parts of the leafs in a tree, the higher parts of the
tree (aggregate clusters) are more likely to remain the same. This is an important ob-
servation because it suggests that, for big datasets, the utility preservation is expected
to remain at consistently high levels even under increased levels of obfuscation.

8. RELATED WORK

Watermarking is a steganographic technique used for establishing ownership, with
many applications in multimedia datasets [Cox et al. 1997] such as images [Moulin
et al. 2000], vector graphics [Xiamu Niu 2006], audio [Bassia et al. 2001; Swanson et al.
1998], and video [Simitopoulos et al. 2002; Zhu et al. 1999]. Multimedia watermarking
focuses on the protection of a single object while minimizing visual/audible distortions
of the data. In contrast, our setting operates on a collection of objects and, at the same
time, accounts for preservation of distance relations between objects. More importantly,
our scenario incorporates additional constraints in the form of guaranteeing identical
outputs after watermarking for a class of mining and learning algorithms based on
HC.

Privacy-preserving techniques are also related to our work because they also alter
data but enforce different constraints. To achieve privacy preservation, two research
paths are typically followed: (a) protection through data alteration or masking and (b)
protection through dataset partition. Data alteration can be achieved via noise addition
[Liu and Thuraisingham 2006; Kargupta et al. 2003], condensation [Aggarwal and Yu
2004], or data transformation [Chen and Liu 2005; Oliveira and Zaı̈ane 2010]. Similar
notions have also been used for watermarking databases [Agrawal and Kiernan 2002;
Sion et al. 2004]. Contrary to these approaches, we do not attempt to reconstruct the
original data distribution but work directly on the perturbed data while guaranteeing
preservation of distance properties on them.

Privacy protection via dataset partition is achieved using horizontal or vertical data
partitioning [Vaidya and Clifton 2003; Jagannathan et al. 2006; Yu et al. 2006a, 2006b].
Different portions of the data are distributed to different sites, and data exchange with-
out leakage of private information becomes possible through cryptographic techniques
(multiparty computation). The techniques in our approach are fundamentally different;
the dataset is not dissected in portions but is distributed as a whole.

Of relevance is also the work on watermarking streaming time-series [Sion et al.
2006]. In contrast to our approach, Sion et al. examine watermarking on a single
numerical sequence, as opposed to considering a collection of sequences. We also aim
at maintaining the original pairwise relationships, and we consider resilience even
under geometric data transformations (rotations, etc.). Approaches for watermarking
categorical data, which we do not address in this work, can be found in Atallah et al.
[2004] and Coatrieux et al. [2011].

In summary, our setting presents additional challenges compared to traditional
watermarking or privacy preservation techniques because not only do we work directly
on the perturbed data, but more importantly, we provide provable guarantees on
preservation of distance properties. Right-protection schemes based on watermarking
principles that preserve Nearest-Neighbors (NNs) of objects using either additive
or multiplicative techniques have been presented in Lucchese et al. [2010] and
Zoumpoulis et al. [2014], respectively. We adopt the spread-spectrum watermarking
model of these works, but here we study the more elaborate case of HC preservation.
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We also examine the tradeoff between obfuscation and mining utility on watermarking.
An approach for anonymization in data publishing that relies on maintaining certain
patterns is proposed in Xue et al. [2011]. The key idea is to sample the solution space
uniformly at random by performing a random walk. They illustrate their technique
by applying it to k-means clustering. However, for HC, they do not provide any
guarantees. The topic of privacy-preserving data publishing for cluster analysis has
also been examined in Fung et al. [2009], where the clustering problem is tackled via
a transformation to a classification problem.

In Mukherjee et al. [2006], the Fourier transform was used for privacy preservation
and data reduction. Frequencies containing little energy are suppressed. One of the
findings was that, for real-world datasets, it suffices to simply pick the first couple of
high-energy coefficients of the Fourier transform of the entire dataset such that some
high-energy coefficients are also chosen for each point. We confirm this to a great ex-
tent. To further increase privacy, these coefficients may also be permuted. The paper
evaluates the scheme on k-means clustering but does not offer any utility guarantees.
In Li and Li [2009], the Pareto-efficiency principle from economics is applied to study
the tradeoff between privacy and utility in data publishing. Parameswaran and Blough
[2005] uses NN substitution to guarantee privacy and cluster preservation. Our ap-
proach does not need to replace NN’s, but it learns the maximum amount of noise
that can be added, which guarantees cluster preservation. The method presented in
Oliveira and Zaı̈ane [2010] randomly rotates, scales, and/or translates the data (thus
hiding them); therefore, original distances—and hence clustering—is preserved. How-
ever, this approach is very susceptible to attacks, as shown in Turgay et al. [2008].
There has also been a number of papers dealing specifically with the anonymization of
trajectories. In Terrovitis and Mamoulis [2008], an attacker might know parts of a tra-
jectory, but this knowledge should not allow him to identify other locations given a set
of published trajectories. The work discusses location and time-series anonymization
through value generalization to the spatiotemporal field. An extension of k-anonymity
to space-time trajectories using co-location is proposed in Abul et al. [2008]. Through
space translation, the exact location of an object is disguised. The LKC privacy model
for trajectories is introduced in Mohammed et al. [2009]. It draws on the observation
that trajectories are high dimensional and sparse, thus making k-anonymity an im-
proper tool due to its heavy negative impact on data utility. Privacy is achieved through
global suppression; that is, if a sequence of locations is suppressed in one trajectory,
then it is also suppressed in all other trajectories. The notion of differential privacy
has also attracted a lot of attention. In Xiao et al. [2011], the authors make use of or-
thonormal transforms (wavelets) to guide the process of enforcing differential privacy.
Also, Jiang et al. [2013] present a mechanism for publishing trajectories of ships that
is ε-differentially private and also provides good utility.

9. CONCLUSION

Right-protection presents an inherent tradeoff: The ownership key should be embedded
with high intensity to guarantee robustness of detection, but, at the same time, the
embedding should compromise to the least amount the utility of the dataset, so that
it is useful for subsequent mining operations. We present a watermarking technique
that identifies an optimal compromise between the two conflicting factors. We design
algorithms that find the maximum embedding power that guarantees preservation of
HC operations on the modified dataset. The fast variants that we put forward can
reduce, in certain cases, the search space by more than 6,000 times compared to the ex-
haustive algorithms, with no sacrifice in accuracy. Our analysis is generic and delivers
great promise for a broader applicability for other distance-based mining operations,
such as anomaly detection, classification, and visualization.
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