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ABSTRACT
The (∆ + 1)-coloring problem is a fundamental symmetry
breaking problem in distributed computing. We give a new
randomized coloring algorithm for (∆+1)-coloring running in

O(
√

log ∆)+2O(
√

log logn) rounds with probability 1−1/nΩ(1)

in a graph with n nodes and maximum degree ∆. This
implies that the (∆ + 1)-coloring problem is easier than the
maximal independent set problem and the maximal matching
problem, due to their lower bounds by Kuhn, Moscibroda,
and Wattenhofer [PODC’04]. Our algorithm also extends
to the list-coloring problem where the palette of each node
contains ∆ + 1 colors.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Computa-
tions on discrete structures

General Terms
Algorirthms, Theory

Keywords
Distributed algorithms, graph coloring, symmetry breaking

1. INTRODUCTION
Given a graph G = (V,E), let n = |V | denote the number

of vertices and let ∆ denote the maximum degree. The
k-coloring problem is to assign each vertex a color from
{1, 2, . . . , k} such that no two neighbors are assigned with
the same color.
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and CCF-1422569.
†Supported by NSF Awards CCF-0939370, BIO-1455983,
and AFOSR FA9550-13-1-0042. Part of the work was done
while at University of Michigan, supported by NSF grant
CCF-1217338.

In this paper, we study the (∆ + 1)-coloring problem in
the distributed LOCAL model. In this model, vertices host
processors and operate in synchronized rounds. In each
round, each vertex sends one message of arbitrary size to
each of its neighbors, receives messages from its neighbors,
and performs (unbounded) local computations. The time
complexity of an algorithm is measured by the number of
rounds until every vertex commits its output, in our case, its
color.

The distributed coloring problem, and variants, have a long
history dating back to the 1980’s. We consider the most com-
mon form: the (∆+1)-coloring problem. Table 1 summarizes
the results for this problem. Two major branches of study
have been developed, the deterministic approach and the ran-
domized approach. For the deterministic approach, several
algorithms with running time of O(f(∆) + log∗ n) have been
developed [4, 8, 26, 27, 17, 16]. The latter term is necessary
as Linial showed that 3-coloring a ring requires Ω(log∗ n)
rounds [27]. It had been questioned whether an algorithm
with a sublinear function f(∆) exists, since there are Ω(∆)
lower bounds for related problems, in more restrictive set-
tings [18, 21, 26, 42]. A breakthrough by Barenboim [4] first

gave an algorithm running in O(∆3/4 log ∆ + log∗ n) rounds,
which is notably sublinear in ∆. Subsequently, the bound
was improved to O(

√
∆ log2.5 ∆ + log∗ n) by Fraigniaud et

al. [13].
The randomized approach can be traced back to the

O(logn) rounds maximal independent set (MIS) algorithm
of Alon, Babai, and Itai [1] and Luby [29], where the latter
showed that the (∆ + 1)-coloring problem can be reduced
to the MIS problem. The O(logn) upper bound lasted until
Schneider and Wattenhofer gave an algorithm of running
time O(log ∆ +

√
logn) [41]. Then, Barenboim et al. [9]

improved the dependence on n to 2O(
√

log logn) by a graph
shattering technique. All the algorithms require Ω(logn)
rounds when ∆ = nc for some constant 0 < c ≤ 1.

We give an algorithm that runs inO(
√

log ∆)+2O(
√

log logn)

time, which is the first algorithm that runs in o(logn) rounds
for any graph. Moreover, this implies a separation between
the (∆ + 1)-coloring and the MIS problem. The coloring
problem and the MIS problem are related; for example, given
a (∆ + 1)-coloring one can compute a MIS in ∆ + 1 rounds
by letting a node with color i join the MIS in round i (if no
neighbor joined previously). Conversely, Luby [29] showed
that any MIS algorithm can be used for (∆ + 1)-coloring in
the same running time by simulating it on a blow-up graph.
Kuhn, Moscibroda, and Wattenhofer [24] showed that there

exists a family of graphs with ∆ = 2O(
√

logn log logn) such



Bounds Randomized Deterministic

Upper

O(
√

log ∆) + 2O(
√

log logn) [This paper] O(
√

∆ log2.5 ∆ + log∗ n) [13]

O(log ∆) + 2O(
√

log logn) [9] O(∆3/4 log ∆ + log∗ n) [4]
O(log ∆ +

√
logn) [41] O(∆ + log∗ n) [8]

O(logn) [29, 1, 22] O(∆ log ∆ + log∗ n) [26]
O(∆2 + log∗ n) [27, 17]
O(∆ logn) [17]

∆O(∆) +O(log∗ n) [16]

2O(
√

logn) [34]

Lower Ω(log∗ n) [27] Ω(log∗ n) [27]

Table 1: Comparison of (∆ + 1)-coloring algorithms and lower bounds

that computing an MIS or a maximal matching requires at
least Ω(

√
logn/ log logn) rounds1. To this date, it has been

unclear whether (∆+1)-coloring, MIS and maximal matching
are equally hard problems. (A separation was known between
(2∆− 1)-edge coloring problem and the maximal matching
problem [12]). Our algorithm computes (∆ + 1)-coloring in

the above graphs in O((logn log logn)1/4) rounds. Thus, it
implies (∆ + 1)-coloring is an easier problem.

In addition, our algorithm extends to a closely related
generalization of the vertex-coloring problem known as list-
coloring. Here, each vertex is equipped with a palette con-
taining (∆ + 1) colors; each vertex selects one color from its
palette, and no two neighbors can be assigned the same color.
(∆ + 1)-coloring is a special case, in which every vertex has
the same palette of size ∆ + 1.

1.1 Technical Summary
We begin by observing that if we use more colors than

are needed, then it is possible to color the graph faster. For
example, graphs can be colored very fast using (1 + Ω(1))∆
colors [41, 12]. Similar ideas apply to sparse graphs, whose
chromatic number is known to be smaller than ∆ + 1. Elkin,
Pettie, and Su [12] showed that if a graph is (1− ε)-locally-
sparse, then it is possible to obtain a (∆ + 1)-coloring in

O(log(1/ε)) + 2O(
√

log logn) rounds.
It is thus the dense parts of the graph that become a

bottleneck. On the other hand, if a graph is dense, then it is
likely to have short diameter. Since computation is free in
the distributed setting, a single vertex in the graph can read
in all the information in diameter time, make a decision, and
broadcast it to the whole graph.

We develop a network decomposition procedure based on
local sparseness. Our decomposition algorithm is targeted
towards identifying dense components of constant weak di-
ameter and sparse components in a constant number of
rounds. Roughly speaking, a sparse vertex is one which has
≤ (1− ε)∆2 edges in its neighborhood, where ε > 0 is a pa-
rameter that we will carefully choose. At the same time, we
would also like to bound the number of neighbors of a dense
component that are not members of the dense component
itself, called external neighbors. This step is necessary to
bound the influence of color choices of nodes in one com-
ponent on other components. This mechanism may help to
leverage algorithms for other distributed problems that can
handle either dense or sparse graphs well.

1The same authors claimed the bound can be improved to

Ω(
√

logn) with graphs of ∆ = 2O(
√

logn) in [25]. However,
recently Bar-Yehuda, Censor-Hillel, and Schwartzman [3]
pointed our an error in their proof.

First, we ignore the sparse vertices. Since each dense
component has constant weak diameter, it can elect a leader
to assign a color to every member so that no intra-component
conflicts occur (i.e. the endpoints of the edges inside the same
component are always assigned different colors). Meanwhile,
we hope that the assignments are random enough so that the
chance of inter-component conflicts will be small. Combined
with the property of the decomposition that the number of
external neighbors is bounded, we show that the probability
that a vertex remains uncolored is roughly O(ε) in each round.
After O(log1/ε ∆) rounds, the degree of each vertex becomes
sufficiently small so that the algorithm of Barenboim [4] can
handle the residual graph efficiently.

For the sparse vertices we analyze a preprocessing initial
coloring step of the algorithm. We show that there will be
an Ω(ε2∆) gap between the palette size and the degree due
to the sparsity. The gap remains while the dense vertices
are colored. So, we will be able to color the sparse vertices
by using the algorithm of Elkin et al. [12], which requires
O(log(1/ε)) + exp(O(

√
log log n)) rounds. In contrast to [12],

our analysis generalizes to the list-coloring problem. By

setting ε = 2−Θ(
√

log ∆), we balance the round complexity
between the dense part and the sparse part, yielding the
desired running time.

The main technical challenge lies in the dense components.
In each component, we need to generate a random proper
coloring so that each vertex has a small probability of re-
ceiving the same color as one of its external neighbors. We
give a process for generating a proper coloring where the
probability that a vertex gets any color from its palette is
close to uniform. Additionally, we will need to show that
the structure of the decomposition is maintained so that a
vertex remains to have a small fraction of external neighbors
in the next round. This requires showing tight concentra-
tion bounds on certain quantities. However, the process of
generating a random proper coloring creates a cascade of
dependence on the colors received by the vertices. Standard
concentration inequality arguments based on bounded dif-
ferences such as Azuma’s inequality do not apply. We use
instead a novel argument based on the rank statistics of
the random permutations, which are independent between
vertices in the same component.

1.2 Overview
In Section 2, we review related algorithms for network de-

composition and coloring. In Section 3, we state our network
decomposition. In Section 4, we outline the full algorithm
for list-coloring. It consists of two steps: an initial coloring
step applied to all vertices, and multiple rounds of dense
coloring. In Section 5, we describe the initial coloring step



for creating the gap between the palette size and the degree
for sparse vertices. In Section 6, we describe a single round
of the dense coloring procedure and analyze the behavior of
the graph structure. In Section 7, we finish our analysis by
solving recurrence relations for dense components which yield
the overall algorithm run time. In Section 8, we apply the
initial coloring step to give a full algorithm for locally-sparse
graphs; this extends the algorithm of [12] to list-coloring.

2. RELATED WORK
Various network decompositions have been developed to

solve distributed computing problems. Awerbuch et al. [2]
introduced the notion of (d, c)-decompositions where each
component has a diameter d and the contracted graph can be
colored in c colors. They give a deterministic procedure for ob-

taining a (2O(
√

logn log logn), 2O(
√

logn log logn))-decomposition,
which can be used to compute a (∆ + 1)-coloring and MIS

in 2O(
√

logn log logn) rounds deterministically. Panconesi and

Srinivasan [34] showed how to obtain a (2O(
√

logn), 2O(
√

logn))-

decomposition, yielding 2O(
√

logn)-time algorithms for (∆+1)-
coloring and MIS. Linial and Saks [28] gave a randomized
algorithm for obtaining a (O(log n), O(log n))-decomposition
in O(log2 n) rounds. Barenboim [7] gave a randomized algo-
rithm for obtaining (O(1), Oε(1))-decompositions in O(nε)
rounds.

Reed [37] introduced the structural decomposition to study
the chromatic number of graphs of bounded clique size (see
[31] for a detailed exposition). It was later used for various
applications including total coloring, frugal coloring, and
computation of the chromatic number [38, 33, 30, 32]. Our
network decomposition method is inspired by theirs in the
sense that they showed a graph can be decomposed into a
sparse component and a number of dense components. How-
ever, as their main goal was to study the existential bounds,
the properties of the decomposition between our needs are dif-
ferent. For example, the diameter is an important constraint
in our case. Also, our decomposition must be computable in
parallel, while theirs is obtained sequentially.

The (∆ + 1)-coloring algorithms are briefly summarized in
Table 1. Barenboim and Elkin’s monograph [6] contains an
extensive survey of coloring algorithms. Faster algorithms
also exist if we use more than (∆+1) colors. For deterministic
algorithms, Linial [27] and Szegedy and Vishwanathan [42]
gave algorithms for obtaining a O(∆2)-coloring running in
O(log∗ n) rounds. Barenboim and Elkin [5] showed how
to obtain an O(∆1+ε)-coloring in O(log ∆ · logn) rounds.
For randomized algorithms, Schneider and Wattenhofer [41]

showed that an O(∆ log(k) n + log1+1/k n)-coloring can be
obtained in O(k) rounds. Combining the results in [41] with
Kothapalli et al. [23], an O(∆)-coloring can be obtained in
O(
√

logn) rounds. Barenboim et al. [9] showed it can be

improved to 2O(
√

log logn) rounds.
On the other hand, there are algorithms for coloring the

graph using less than (∆ + 1) colors for sparse-type graphs.
Panconesi and his co-authors [20, 11, 19, 35] developed a
line of randomized algorithms for edge coloring (the line
graph is sparse) and Brook-Vizing colorings in the distributed
setting. For example, in [20], they showed that an O( ∆

log ∆
)-

coloring for girth-5 graphs can be obtained in O(log n) rounds,

provided ∆ = (log n)1+Ω(1). Pettie and Su [36] generalized it
to triangle-free graphs. The restriction on ∆ can be removed

by applying the constructive Lovász Local Lemma in the
distributed setting [10].

Distributed coloring using less than ∆ + 1 depending on
the chromatic numbers χ has been investigated by Schneider
et al. [39]. They require (1 − 1/O(χ)) · (∆ + 1) colors for
a running time of O(logχ + log∗ n) for graphs with ∆ ∈
Ω(log1+1/ log∗ n n) and χ ∈ O(∆/ log1+1/ log∗ n n).

More efficient algorithms for (∆ + 1)-coloring exist for
very dense graphs, e.g. a deterministic O(log∗ n) algorithm
for growth bounded graphs (e.g. unit disk graphs) [40], as
well as for many types of sparse graphs [9, 12, 36], e.g.
for graphs of low arboricity. The arboricity of a graph is
the minimum number of edge-disjoint forests, whose union
contains all edges of the graph. A graph is (1 − ε)-locally
sparse, if for every vertex v ∈ V , its neighborhood induces
at most (1 − ε)

(
∆
2

)
edges. In [12], a distributed (∆ + 1)-

coloring algorithm was given for locally-sparse graphs, which
we expand to cover list-colorings as well.

As we have discussed, the MIS problem and the coloring
problems are related. The MIS can be computed determinis-

tically in O(∆ + log∗ n) rounds [8] and in 2O(
√

logn) rounds
[34]. Very recently, Ghaffari [15] reduced the randomized

complexity of MIS to O(log ∆) + 2O(
√

log logn). Whether an
MIS can be obtained in polylogarithmic deterministic time
or sublogarithmic randomized time remain interesting open
problems.

A generalization of MIS, known as an ruling set, has also
been considered. A (α, β)-ruling set U ⊆ V [2] is a set of
vertices such that two nodes u, u′ ∈ U have distance at least
α and for any node v ∈ V \ U there exists a node u ∈ U
with distance at most β. MIS is a special case, namely a
(2, 1)-ruling set. A number of papers [14, 39, 2] use ruling sets
to compute colorings in different kinds of graphs. A ruling
set can be viewed as defining a network decomposition, such
that any component has diameter at least α and at most 2β.

3. NETWORK DECOMPOSITION AND
SPARSITY

In this section, we define a structural decomposition of the
graph G into sparse and dense vertices. We measure these
notions with respect to a parameter ε ∈ [0, 1].

Definition 3.1 (Friend edge). We say an edge uv is
a friend edge if u and v share at least (1− ε)∆ neighbors (i.e.
|N(u) ∩N(v)| ≥ (1− ε)∆). We define F ⊆ E to be the set
of friend edges.

For any vertex u, we say v is a friend of u if uv ∈ F ; we
denote the friends of u by F (u).

Definition 3.2 (Dense and sparse vertices). A
vertex v ∈ V is dense if it has at least (1 − ε)∆ friends.
Otherwise, it is sparse.

We write V dense ⊆ V for the set of dense vertices in G,
and V sparse for the set of sparse vertices in G.

Definition 3.3 (Weak diameter). Let H ⊆ G be a
subgraph of G. For vertices u, v ∈ V , let d(u, v) denote the
distance between u and v in G. The weak diameter of H is
defined to be maxu,v∈H d(u, v).

Let C1, . . . , Ck be the connected components of the sub-
graph H = (V dense, EH) ⊆ G, where EH = {uv |
u, v ∈ V dense and uv ∈ F}. That is, they are the connected



components induced by friend edges and dense vertices. The
vertices of G are partitioned disjointly as V = V sparse t
V dense = V sparse tC1 t · · ·tCk. We refer to each component
Cj as an almost-clique.

Lemma 3.4. Suppose ε < 1/5. Then, for any vertices
x, y ∈ Cj, we have |N(x) ∩N(y)| ≥ (1− 2ε)∆.

Proof. As x, y are in the same component Cj , there is
a path of friend edges x = u0, . . . , ut = y connecting them.
We claim that |N(x) ∩N(ui)| ≥ (1− 2ε)∆ for all i ≥ 1. We
will show this by induction on i. The base case i = 1 follows
as xu1 is a friend edge.

Now, consider the induction step. As ui−1ui is a friend,
|N(ui) ∩N(ui−1)| ≥ (1− ε)∆. By the induction hypothesis,
|N(x) ∩N(ui−1)| ≥ (1− 2ε)∆.

We thus have:

|N(x) ∩N(ui)|
≥ |N(x) ∩N(ui−1) ∩N(ui)|
= |N(ui−1) ∩N(ui)|+ |N(ui−1) ∩N(x)|−

|(N(ui−1) ∩N(ui)) ∪ (N(ui−1) ∩N(x))|
(inclusion-exclusion)

≥ |N(ui−1) ∩N(ui)|+ |N(ui−1) ∩N(x)| − |N(ui−1)|
≥ (1− ε)∆ + (1− 2ε)∆−∆

= (1− 3ε)∆

Since x and ui are dense, we have |N(x) \ F (x)| ≤ ε∆
and |N(ui) \ F (ui)| ≤ ε∆. Therefore, |F (x) ∩ F (ui)| =
|(N(x) ∩N(ui)) \ (N(x) \ F (x)) \ (N(ui) \ F (ui))| ≥ (1−
3ε)∆− ε∆− ε∆ ≥ (1− 5ε)∆ > 0.

So x and ui have a common friend w. This implies that
|N(x)∩N(w)| ≥ (1−ε)∆ and |N(ui)∩N(w)| ≥ (1−ε)∆. By
a similar inclusion-exclusion argument, this implies |N(x) ∩
N(ui)| ≥ (1− 2ε)∆.

Corollary 3.5. Suppose ε < 1/5. Then all almost-
cliques have weak diameter at most 2.

Proof. By Lemma 3.4, any vertices x, y ∈ Cj have
|N(x) ∩N(y)| ≥ (1− 2ε)∆ > 0. In particular, they have a
common neighbor.

A vertex v in Cj can identify all other members of Cj in
O(1) rounds by the following: Initially, each vertex u ∈ G
broadcasts the edges incident to u to all nodes within distance
3. In this way, every vertex v learns the graph topology of
all nodes up to distance 3, which is sufficient to determine
whether an edge (both of whose endpoints are within distance
2 of v) is a friend edge and whether a vertex (within distance
2) is dense. Since by Corollary 3.5, all members of Cj are
within distance 2 to v, all the members can be identified.
Also, the leader of Cj can be elected as the member with the
smallest ID.

Definition 3.6 (External degree). For any dense
vertex v ∈ Cj, we define d(v), the external degree of v, as
the number of dense neighbors of v outside Cj. (Sparse
neighbors are not counted.)

Lemma 3.7. For any dense vertex v, we have d(v) ≤ ε∆.

Proof. Let v ∈ Cj be dense. As v is dense, it has at least
(1− ε)∆ friends. So it has at most ε∆ dense vertices which
are not friends. If any dense vertex w is a friend of v, then
by definition w ∈ Cj . So v has at most ε∆ dense neighbors
outside Cj .

Definition 3.8 (Anti-degree). For any dense vertex
v ∈ Cj , we define the anti-degree of v to be a(v) = |Cj\N(v)|.

Lemma 3.9. Suppose ε < 1/5. Then for any Cj and
v ∈ Cj, we have a(v) ≤ 3ε∆.

Proof. We will show this by counting in two ways the
number of length-2 paths of the form v, x, u where x ∈ G
and u ∈ Cj \N(v). First, observe that for any u ∈ Cj \N(v),
there are precisely |N(v) ∩N(u)| possibilities for the middle
vertex x. Thus we have

R =
∑

u∈Cj\N(v)

|N(v) ∩N(u)|;

by Lemma 3.4, for any u ∈ Cj \N(v) we have |N(v)∩N(u)| ≥
(1− 2ε)∆. So R ≥ a(v)(1− 2ε)∆.

We can also count R by summing over the middle vertex
x:

R =
∑

x∈N(v)

|N(x) ∩ (Cj \N(v))|

≤
∑

x∈N(v)

|N(x) \N(v)|

=
∑

x∈F (v)

|N(x) \N(v)|+
∑

x∈N(v)\F (v)

|N(x) \N(v)|

≤
∑

x∈F (v)

ε∆ +
∑

x∈N(v)\F (v)

∆

≤
∑

x∈N(v)

∆−
∑

x∈F (v)

(∆− ε∆)

≤ ∆2 − (1− ε)(∆− ε∆) |F (v)| ≥ (1− ε)∆ as v is dense

= ∆2(2− ε)ε

Thus, we must have

a(v)(1− 2ε)∆ ≤ R ≤ ∆2(2− ε)ε

So a(v) ≤ ∆ ε(2−ε)
1−2ε

; this is at most 3ε∆ for ε < 1/5.

Corollary 3.10. For ε < 1/5, all almost-cliques have
size at most (1 + 3ε)∆.

Proof. Let v ∈ Cj . Then |Cj | = |Cj \ N(v)| + |Cj ∩
N(v)| ≤ a(v) + |N(v)| ≤ (1 + 3ε)∆.

4. FULL ALGORITHM OUTLINE
We can now describe our complete algorithm for list-

coloring graphs, whether sparse or dense. We set the den-

sity parameter ε = C · 100−d
√

ln ∆e, where C > 0 is a
small constant (to be specified later). Also, we assume
that ε4∆ ≥ K lnn for sufficiently large constant K; if
ε4∆ < K lnn, then ∆ < polylog(n), and so then the
coloring procedure of [9] will already color the graph in

O(log ∆) + 2O(
√

log logn) = 2O(
√

log logn) rounds.

1. Decompose G into V sparse, C1, . . . , Ck.

2. Execute the initial coloring step for all vertices.

3. For i = 1, . . . , d
√

ln ∆e, execute the ith dense coloring
step on the dense vertices.

4. Run the algorithm of [12] to color the sparse vertices.

5. Run the algorithm of [9] to color the residual graph.



We note that the decomposition of G in step (1) remains
fixed for the entire algorithm. Although in later steps vertices
become colored and are removed from G, we always define
the decomposition in terms of the original graph G, not the
residual graph. However, we abuse notation so that when
we refer to a component Cj during an intermediate step, we
mean the intersection of Cj with the residual (uncolored)
vertices.

The initial coloring step is the following: With probability
99/100, each vertex does nothing; otherwise it selects a color
from its palette. All these choices are made uniformly and
independently. If two adjacent vertices select the same color,
then the vertex with higher ID discards its choice of color
(i.e. it becomes decolored).

We assume at the end of the initial coloring step and the
end of each dense coloring step, if a vertex gets colored, it
will be removed from the graph (as well as from the vertex
set V sparse, C1, . . . , Ck it belongs to). Also, the color used by
it will be removed from the palettes of its neighbors. For any
vertex v, let Pal0(v), d0(v) denote, respectively, the palette
and degree of v after the initial coloring step (note that the
0 does not denote time 0, but the time immediately after the
initial coloring step), and we let Q0(v) = |Pal0(v)|. We will
show in Lemma 5.8 that whp for every sparse vertex v we
have

Q0(v) ≥ d0(v) + Ω(ε2∆).

and that for every vertex v (sparse or dense) we have Q0(v) ≥
∆/2.

Then we turn our attention to the dense vertices and
we will show that they can be colored efficiently. For a
dense vertex x ∈ Cj , we let d0(x) and a0(x) denote its
external degree and anti-degree after the initial coloring step.
Let Pali(x), di(x), di(x), ai(x), Qi(x) denote the quantities
at the end of the ith dense coloring step. As we color the
graph, we maintain two key parameters, Di, Zi which bound
the external degree, anti-degree, and palette size for dense
vertices after the ith dense coloring step. Namely, we ensure
the invariant that for all dense vertices v we have

ai(v) ≤ Di, di(v) ≤ Di, Qi(v) ≥ Zi

Initially,

D0 = 3ε∆ Z0 = ∆/2

The ith dense coloring step is as follows:

1. For each Cj , elect a leader to simulate the following
process to color Cj :

2. Generate a random permutation πj on 1, . . . , |Cj |

3. For k = 1, . . . , L = d|Cj |(1− 2(
Di−1

Zi−1
) ln(

Zi−1

Di−1
))e:

4. vπ(k) ∈ Cj randomly selects a color in its
palette not selected by its neighbors in Cj .

5. If some vertex v ∈ Cj has a color conflict with a vertex
in Cj′ for j′ < j, then decolor v. Note that we can
simply use the ID of the leader of the almost-clique as
the index of the almost-clique for this.

It may seem more natural to attempt to color all the
vertices of Cj in step 3, as opposed to only L of them.
However, this would cause the palette sizes to shrink too
quickly. We discuss this issue in more detail in Section 6.

(As we will show in Lemma 7.2, the choice of L in step (3) is
meaningful, that is, we have (1− 2Di/Zi ln(Zi/Di)) ∈ [0, 1]

for all i ≤ d
√

ln ∆e. )
Note that the excess of palette size over degree can only

increase during the course of this algorithm (every time we
color a neighbor of v, we delete at most one color from Pal(v).
So at the end of the dense coloring steps, we have that for
every sparse vertex v

Qd
√

ln ∆e(v)− dd√ln ∆e(v) ≥ Q0(v)− d0(v) ≥ Ω(ε2∆)

The algorithm of Elkin et al. [12] is designed for list-
coloring in which the palette sizes significantly exceed the
degree. This indeed holds for the sparse vertices: their
palette sizes exceeds their degree by Ω(ε2∆). Thus they can

be colored in O(log(1/ε2)) + 2O(
√

log logn) = O(
√

log ∆) +

2O(
√

log logn) rounds. This removes the sparse vertices from
the graph, leaving only the dense vertices behind.

After the sparse vertices are removed, Theorem 7.5 shows
that each remaining dense vertex is connected to ∆′ ≤
O(log n) · 2O(

√
log ∆) other vertices. The algorithm of [9] then

takes O(log ∆′) + 2O(
√

log logn) = O(
√

log ∆) + 2O(
√

log logn)

steps.

5. THE INITIAL COLORING STEP
We assume that the vertices initially have a palette con-

taining exactly ∆ + 1 colors. The key to analyzing the local
situation, as in [12], is to show that after the initial coloring
step, every sparse vertex has significantly more colors in its
palette than it has neighbors.

Recall the procedure is that with probability 99/100, each
vertex does nothing; otherwise it selects a color A(v) from
its palette uniformly at random and discards its choice of
color if a neighbor with lower ID chooses the same color. For
each vertex, we let B(v) denote the final choice of color; we
say A(v) = 0 if vertex v chose not to select a color initially
and we say B(v) = 0 if v is uncolored (either because it
did not select an initial color, or it became decolored). One
simple property of this process is that any vertex receives
any potential color with probability Ω(1/∆):

Lemma 5.1. For any vertex v and any color c ∈ Pal(v),
we have

P (B(v) = c) ≥ 0.009

∆ + 1

Proof. We have B(v) = c if A(v) = c and there is no
w ∈ N(v) with A(w) = c and ID(w) < ID(v).

P (B(v) = c) ≥ P (A(v) = c)
∏

w∈N(v)

P (A(w) 6= c)

≥ 1/100 · 1

∆ + 1
·
(

1− 1

100(∆ + 1)

)|N(v)|

≥ 0.009

∆ + 1

One crucial property of this process is that each B(v) is
completely determined by the random variables A(u), where
ID(u) ≤ ID(v). We can think of this coloring procedure as a
stochastic process (in which the vertex ID plays the role of
time).

Let us now fix some sparse vertex v, and show that after
the initial coloring step v has more colors in its palette than



it has neighbors. For each color c, let Xc denote the number
of neighbors w ∈ N(v) which have B(w) = c at the end of
the coloring process.

Lemma 5.2. Let d(v),Pal(v) denote the initial degree and
palette of vertex v. Then we have

Q0(v)− d0(v)

≥ ∆ + 1− d(v) +
∑

c∈Pal(v)

max(0, Xc − 1) +
∑

c/∈Pal(v)

Xc

where recall that d0(v), Q0(v) are the degree and palette size
of v after the initial coloring step.

Proof. Suppose we go through the vertices in an increas-
ing order of their ID, v1, v2, . . . , vn, where ID(v1) < ID(v2) <
. . . < ID(vn). At stage i we fix the color of vertex vi to B(vi).
If B(vi) 6= 0, we remove vi from the graph and remove B(vi)
from the palette of all its neighbors. Given the vertex v, let
Q(v) denote the palette size and let φi denote the value of
Q(v)− d(v) after processing vertices v1, . . . , vi in this man-
ner. In this case, φ0 = Q(v) − d(v) = ∆ + 1 − d(v) and
φn = Q0(v)− d0(v), which is the quantity we are trying to
estimate.

Suppose that vi is a neighbor of v. Let us now examine
how φi changes depending on B(vi). If B(vi) = 0, then vi
remains in the residual graph and neither Pal(v) nor d(v)
are affected, so φi+1 = φi.

Suppose that B(vi) = c and c /∈ Pal(v). This means that
vi has selected a color not appearing in Pal(v). Thus, the
degree of v decreases by one while its palette is unaffected,
so φi+1 = φi + 1. Note the case that c /∈ Pal(v) can only
occur in the list-coloring problem.

Suppose that B(vi) = c and c ∈ Pal(v). If vi is the first
vertex such that B(vi) = c, we have φi+1 = φi and color c
is removed from Pal(v). Otherwise, there exists j < i with
B(vj) = c, then c is no longer in Pal(v) and thus we have
φi+1 = φi + 1.

Thus, we have identified max(0,Xc − 1) (for c ∈ Pal(v))
and Xc vertices (for c /∈ Pal(v)) which select color c and
cause φi+1 = φi + 1. These vertices all must be disjoint, so
there are at least

∑
c∈Pal(v) max(0,Xc − 1) +

∑
c/∈Pal(v)Xc

vertices for which φi+1 = φi + 1.
This implies that φn ≥ φ0 +

∑
c∈Pal(v) max(0,Xc − 1) +∑

c/∈Pal(v) Xc, which is what we claim.

For any vertex v and color c, we say that color c is good
for v if the following occurs. For c ∈ Pal(v), then c is good
for v if Xc ≥ 2; if c /∈ Pal(v), then c is good for v if Xc ≥ 1.
Let J(v) denote the set of colors that are good for v. By
Lemma 5.2, we have that

Q0(v)− d0(v) ≥ ∆ + 1− d(v) + |J(v)|

We will next show that |J(v)| is large with high probability.
For each vertex v and color c, we define Nc(v) to be the set
of neighbors whose palette contains c; that is,

Nc(v) = {w ∈ N(v) | c ∈ Pal(w)}

For colors c /∈ Pal(v), it is easy to show that c has a good
probability of going into J(v):

Lemma 5.3. Suppose that c /∈ Pal(v). Then

P (c ∈ J(v)) ≥ Ω
( |Nc(v)|

∆

)

Proof. For c /∈ Pal(v), we have c ∈ J(v) iff Xc ≥ 1. By
inclusion-exclusion, we have

P (Xc ≥ 1)

≥
∑

w∈Nc(v)

P (B(w) = c)−
∑

w,w′∈Nc(v)

P (B(w) = B(w′) = c)

≥
∑

w∈Nc(v)

P (B(w) = c)−
∑

w,w′∈Nc(v)

P (A(w) = A(w′) = c)

≥ 0.009|Nc(v)|
∆ + 1

− |Nc(v)|2

1002(∆ + 1)2
by Lemma 5.1

≥ 0.004|Nc|/∆

For colors c ∈ Pal(v), it is harder to bound the probability
that c ∈ J(v).

Lemma 5.4. Suppose that ε∆ ≥ 3 and ε < 1/5. If v is a
sparse vertex, c ∈ Pal(v), and |Nc(v)| ≥ (1− 0.01ε)∆, then
P (c ∈ J(v)) ≥ Ω(ε2).

Proof. Let S denote the set of all neighbors of v which
contain color c and are not friends of v;

S = {w ∈ Nc(v) | wv /∈ F}

By definition of sparsity, v has at most (1− ε)∆ friends.
Thus, |S| ≥ |Nc(v)| − (1− ε)∆ ≥ 0.99ε∆.

For each w ∈ S, we have |N(w) ∩N(v)| < (1− ε)∆. So
|Nc(v) − N(w) − {w}| ≥ |Nc(v)| − 1 − |N(v) ∩ N(w)| >
0.99ε∆− 1; by our assumption on the size of ε∆, this is at
least 1

2
ε∆. Thus, for each w ∈ S, one can identify a subset

of vertices Hw with the following properties:

1. Hw ⊆ Nc(v)−N(w)− {w}

2. |Hw| = dε∆/2e

Let us fix some subset S′ ⊆ S, of cardinality exactly
|S′| = d0.01ε∆e. Now, note that a sufficient condition to
have Xc ≥ 2 is that there is some w ∈ S′ and u ∈ Hw with
B(w) = B(u) = c. This happens with probability at least:

P (B(w) = c ∧B(u) = c for some w ∈ S′, u ∈ Hw) ≥∑
w∈S′,u∈Hw

P (B(w) = B(u) = c)

−
∑

w∈S′,u,u′∈Hw,u6=u′
P (B(w) = B(u) = B(u′) = c)

−
∑

w,w′∈S′,w 6=w′
P (B(w) = B(w′) = c)

Notice that the inequality holds by considering the number
of times the event “there is some w ∈ S′ and u ∈ Hw with
B(w) = B(u) = c” is counted on both sides. Let A = {w ∈
S′ | B(w) = c} and Ba = {u ∈ Ha | B(u) = c}. It suffices
to show that 1 ≥

∑
a∈A

∑
b∈Ba

1−
∑
a∈A

∑
b,b′∈Ba,b6=b′ 1−∑

a,a′∈A,a6=a′ 1.

∑
a∈A

∑
b∈Ba

1−
∑
a∈A

∑
b,b′∈Ba,b6=b′

1−
∑

a,a′∈A,a6=a′
1

=
∑
a∈A

(|Ba| − |Ba| · (|Ba| − 1))−
∑

a,a′∈A,a6=a′
1

≤
∑
a∈A

1−
∑

a,a′∈A,a6=a′
1

= |A| − |A| · (|A| − 1) ≤ 1



We can derive an upper bound on P (B(w) = B(u) =
B(u′) = c) by noting that a necessary condition for this
event is that A(w) = A(u) = A(u′) = c, and this occurs with
probability exactly 1

1003(∆+1)3
. There are at most (0.01ε∆ +

1) · (ε∆/2 + 1)2 choices for w, u, u′ so this term is at most
2 · 10−8ε3.

Similarly, we have that P (B(w) = B(w′) = c) ≤
1

1002(∆+1)2
. There are at most (0.01ε∆ + 1)2 choices for

w,w′ so this term is at most 4 · 10−8ε2.
Next, consider some u ∈ Hw. A sufficient condition to

have B(w) = B(u) = c is if A(w) = A(u) = c and there is no
z ∈ N(u) ∪N(w) with A(z) = c. Furthermore, any such z
cannot itself be equal to u or w as u and w are non-neighbors.
Thus,

P (B(w) = B(u) = c)

≥ P (A(w) = A(u) = c)
∏

z∈N(u)∪N(w)

P (A(z) 6= c)

≥ 1

1002(∆ + 1)2

(
1− 1

100(∆ + 1)

)|N(u)∪N(w)|

≥ 9.8 · 10−5 · (∆ + 1)−2 as |N(u) ∪N(w)| ≤ 2∆

Thus, we have∑
w∈S′,u∈Hw

P (B(w) = B(u) = c)

≥ 0.01ε∆ · ε∆/2 · 9.8 · 10−5 · (∆ + 1)−2 ≥ 10−7ε2

And overall we thus have

P (Xc ≥ 2) ≥ 10−7ε2 − 4 · 10−8ε2 − 2 · 10−8ε3 ≥ Ω(ε2)

Lemma 5.5. Suppose that ε∆ ≥ 3 and ε < 1/5. For
any sparse vertex v with d(v) ≥ (1 − 0.005ε)∆, we have
E[|J(v)|] ≥ Ω(ε2∆).

Proof. Observe that for each w ∈ N(v), there are exactly
∆ + 1 values of c for which w ∈ Nc(v). Hence, by double
counting, we have∑

c

|Nc(v)| = (∆ + 1)|N(v)| (1)

Let us divide the set of colors into three disjoint sets

A1 = {c | c /∈ Pal(v)}
A2 = {c | c ∈ Pal(v), |Nc(v)| ≥ (1− 0.01ε)∆}
A3 = {c | c ∈ Pal(v), |Nc(v)| < (1− 0.01ε)∆}

We can decompose the sum (1) as:

(∆ + 1)|N(v)| =
∑
c

|Nc(v)|

=
∑
c∈A1

|Nc(v)|+
∑
c∈A2

|Nc(v)|+
∑
c∈A3

|Nc(v)|

≤
∑

c/∈Pal(v)

|Nc(v)|+ |A2|∆ + |A3|(1− 0.01ε)∆

Rearranging, and using the fact that |A2|+ |A3| = ∆ + 1,
we have∑

c/∈Pal(v)

|Nc(v)|

≥ (∆ + 1)(1− 0.005ε)∆− |A2|∆− |A3|(1− 0.01ε)∆

≥ (∆ + 1)(1− 0.005ε)∆

− |A2|∆− (∆ + 1− |A2|)(1− 0.01ε)∆

= (∆ + 1)(0.005ε)∆− |A2|(0.01ε)∆

= 0.005ε∆(∆ + 1− 2|A2|)
= Ω(ε∆(∆− 2|A2|))

Thus, we have

E
[ ∑
c/∈Pal(v)

[c ∈ J(v)]
]

≥
∑

c/∈Pal(v)

|Nc(v)|Ω(1/∆) by Lemma 5.3

≥ max(0, ε∆(∆− 2|A2|) · Ω(1/∆))

≥ max(0,Ω(ε(∆− 2|A2|)))

Also, by Lemma 5.4, for each c ∈ A2 we have P (c ∈
J(v)) ≥ Ω(ε2). So, summing over all c ∈ Pal(v) we have

E[
∑

c∈Pal(v)

[c ∈ J(v)] +
∑

c/∈Pal(v)

[c ∈ J(v)]]

≥ |A2|Ω(ε2) + Ω(max(0, ε(∆− 2|A2|)))

(Here and in the remainder of the paper, we use the Iverson
notation so that for any predicate P, [P] is equal to 1 if P is
true and zero otherwise.)

This expression is piecewise-linear in |A2|, so it must
achieve its minimum value at one of its corner points
|A2| = 0,∆/2,∆ + 1. At these points, it takes on the ex-
pressions respectively Ω(ε∆),∆/2 · Ω(ε2), and (∆ + 1)Ω(ε2).
Hence, in all three cases it is at least Ω(ε2∆).

We next show that there is a concentration phenomenon
for the number of good colors.

Lemma 5.6. Suppose ε < 1/5. Let v be a sparse vertex.

With probability at least 1−e−Ω(ε4∆), we have d0(v)−Q0(v) ≥
Ω(ε2∆).

Proof. If d(v) ≤ (1 − 0.005ε∆) then Q0(v) − d0(v) ≥
0.005ε∆ ≥ Ω(ε2∆) with certainty. So, we may assume d(v) >
(1− 0.005ε∆).

Also, suppose that ε∆ < 3. In this case, we need to show
that Q0(v)− d0(v) ≥ Ω(ε). But, in the initial graph, we have
Q(v)− d(v) = 1 ≥ Ω(ε), so again in this case the event holds
with certainty. So, we may assume that ε∆ ≥ 3.

If none of these occur, then we will show that |J(v)| ≥
Ω(ε2∆) with probability at least 1− e−Ω(ε4∆) which suffices
to show this claim.

Let W = {v} ∪N(v) and let W̄ denote the set of vertices
whose distance to v are exactly 2. Suppose we examine
the values of A(u), where u ∈ W . Some of these vertices
may decolor others; other vertices may or may not become
decolored, based on A(w) where w ∈ W̄ . Based only on the
colors of the vertices in W , we may derive a set “pre-good”
colors J ′(v); that is, colors c which will go into J(v) unless
they become de-colored due to vertices in W̄ .



Observe that J(v) ⊆ J ′(v), so that E[|J ′(v)|] ≥ Ω(ε2∆).
Let φ > 0 be a constant such that E[|J ′(v)|] ≥ φε2∆ for all
∆ ≥ 1. Also, observe that for u ∈ N(v) changing the value
of A(u) may only change |J ′(v)| by at most 2; (the value of
A(u) can only affect A(u) ∈ J(v); colors c′ 6= A(u) are not
affected). Hence, by the bounded differences inequality, the
probability that |J ′(v)| is smaller than φε2∆ by an amount
of φ

2
ε2∆ is at most

exp

(
− (φε2∆)2

2 ·
∑
i∈{v}∪N(v) 22

)
≤ exp(−Ω(ε4∆))

Now, let us condition on the event |J ′(v)| ≥ φ
2
ε2∆. This

event depends only on the values of A(u) for u ∈ W . So, the
values of A(w) for w ∈ W̄ are still independent and uniform.
Each such vertex has the possibility of decoloring a vertex
in W , possibly causing a color in J ′(v) to not occur in J(v).

For each color c ∈ J ′(v), c /∈ Pal(v), let yc denote the
vertex with the smallest ID in the neighborhood of v with
A(yc) = c and not decolored by any vertices in W . Similarly,
if c ∈ J ′(v), c ∈ Pal(v), let yc, y

′
c denote the two vertices with

smallest IDs in the neighborhood of v with A(yc) = A(y′c) = c
and not decolored by any vertices in W (so yc and y′c cannot
be neighbors). Such colors will go into J(v) unless a vertex
in N(yc) selects c (respectively, in N(yc)∪N(y′c) selects color
c.)

If a vertex w ∈ W̄ selects A(w) = c for such a color
c, causing color c to not appear in J(v), we say that w
disqualifies color c. Observe that

|J(v)| ≥ |J ′(v)| −
∑

c∈J′(v)

w∈(N(yc)∪N(y′c))∩W̄

[w disqualifies color c].

So it suffices to show that∑
c∈J′(v)

w∈(N(yc)∪N(y′c))∩W̄

[w disqualifies color c] < φ
4
ε2∆

with good probability. Now, observe that each event that w
disqualifies color c occurs with probability at most 1/(100(∆+
1)). Furthermore, for each color c, there are at most 2∆
choices of w that can disqualify it. Hence, the expected
number of such disqualifications is at most φ

2
ε2∆ · (2∆) ·

1/(100(∆ + 1)) ≤ 0.01φε2∆.
Furthermore, all such disqualification events are nega-

tively correlated (they are not necessarily independent; a
vertex w may possibly disqualify multiple colors). Hence,
Chernoff’s bound applies, and the probability that the
number of disqualifications exceeds 0.02φε2∆ is at most
exp(−Ω(0.01φε2∆)) = exp(−Ω(ε2∆)).

Overall, we have that |J(v)| ≥ Ω(ε2∆) with probability
1− exp(−Ω(ε4∆)).

We also note a useful property of this coloring procedure:
vertices, whether sparse or dense, retain most of their palette:

Lemma 5.7. At the end of this procedure, for any vertex
v we have

P (Q0(v) ≥ ∆/2) ≥ 1− e−Ω(∆)

Proof. Each vertex w ∈ N(v) chooses an initial color
with probability at most 1/100, independently of any other
vertices. Thus, a simple Chernoff bound shows that there
is a probability of e−Ω(∆) that there are no more than ∆/2

neighbors of v which are colored. So with probability 1 −
e−Ω(∆), vertex v loses ≤ ∆/2 colors from its original palette
size of ∆ + 1.

Lemma 5.8. For K a sufficiently large constant, the fol-
lowing events occur whp:

1. For every sparse vertex v we have d0(v) − Q0(v) ≥
Ω(ε2∆)

2. For every vertex v we have Q0(v) ≥ ∆/2

Proof. By Lemma 5.6, for any individual sparse vertex

v the probability that (1) fails is at most e−Ω(ε4∆). Since
ε4∆ ≥ K lnn, then for K sufficiently large this is < n−100.
We take a union bound over all sparse vertices and the overall
probability that there is some vertex v violating (1) is also

≤ n−Ω(1).
By Lemma 5.7, for any individual vertex v the probability

that (2) fails is at most e−Ω(∆). Again, for K sufficiently
large, this is ≤ n−100 and we have that (2) holds whp for all
vertices.

6. COLORING THE DENSE VERTICES
We suppose that we are at the beginning of the ith dense col-

oring step. We assume that there are parameters Di−1, Zi−1

with the following properties such that for all dense vertices
v we have:

1. ai−1(v) ≤ Di−1

2. d̄i−1(v) ≤ Di−1

3. Qi−1(v) ≥ Zi−1

Henceforth we will suppress the dependence on i and write
simply D,Z, δ = D/Z, a(v), d̄(v),Pal(v), and Q(v). Recall
that the dense coloring step (see Section 4) is that every
Cj generates a rank for its members. Starting from the
vertex with rank 1 to rank d|Cj |(1− 2δ ln(1/δ))e, each vertex
selects a color from its palette excluding the colors selected
by lower rank vertices uniformly at random. This is done by
having a leader in Cj simulating the process. Then, a vertex
becomes decolored if there is an external neighbor from a
lower indexed component choosing the same color .

Our goal is to show for some new parameters D′ and Z′

that we have at the end of the round ai(v) ≤ D′, di(v) ≤ D′
and Qi(v) ≥ Z′. To do this, we will show that most vertices
are colored in round i.

We require throughout this section the following condi-
tions on D and Z, which we will refer to as the regularity
conditions:

1. Dδ ≥ K lnn for some sufficiently large constant K;

2. δ ≤ 1/K for some sufficiently large constant K;

3. Z ≥ 1.

Here K is some universal constant that we will not explicitly
compute; at several places we will assume it is sufficiently
large. In Section 7 we will discuss how to satisfy these
regularity conditions (or how our algorithm can succeed
when they become false).

Consider some almost-clique Cj , with M = |Cj | vertices.
For any vertex v ∈ Cj , we define Nj(v) = N(v) ∩ Cj . The
dense coloring step operates by selecting a random permu-
tation π to order the vertices to be colored. Then, the first
L = dM(1− 2δ ln(1/δ))e vertices in this ordering select their
color χ(v) uniformly from their palettes.



6.1 Overview
We first contrast our dense coloring procedure with a naive

one, which assigns each vertex a random color and decolors
a vertex if there is a conflict. It is not hard to show that
such a procedure successfully assigns a color to a vertex with
constant probability. Thus, in each round, the degrees are
shrinking by a constant factor in expectation. So it takes
Ω(log ∆) rounds to reduce to a low (near-constant) degree.

In order to get a faster running time, we need to color
much more than a constant fraction of the vertices. Here, the
network decomposition plays the decisive role as only external
neighbors of a vertex v can decolor v. To illustrate, suppose
that each vertex v selects a color from its palette uniformly at
random. (That is, suppose we ignore the interaction between
v and the other vertices in Cj). Since the external neighbors
are upper bounded by D and the palette size is at least Z,
even if the external neighbors of v choose distinct colors,
the probability that v has any conflicts with its neighbors is
upper bounded by D/Z = δ = O(ε). Ideally, we would like
to show that each cluster shrinks by a factor of δ in each
round. Moreover, one would also need to prove that the ratio
D′/Z′ in the next round remains approximately δ, so that
the almost-cliques continue to shrink by the same factor.

In our coloring procedure, a vertex does not really get a
color from its original palette uniformly at random, but close
to uniform. For example, if v comes late in the ordering of
π, then its palette may have been reduced to just a single
color. We prove that any vertex v has, in expectation, a large
palette to draw from at the time when it is colored. Usually,
the vertex v comes roughly in the middle of the permutation,
and its effective palette is still relatively large. On average,
the probability a vertex remains uncolored is O(δ ln(1/δ)).

The reason why we only attempt to color the first L ver-
tices rather than the entire almost-clique is that we cannot
afford the palette size to shrink too fast. A “controlled” uni-
form shrinking process maintains the overall ratio between
palette size, external neighbors, and internal neighbors. This
prevents us to go into hard case scenarios.

While it is not difficult to bound the expected palette size
for a single vertex, this is not sufficient for the proof. We will
use a concentration inequality, which boils down to showing
that multiple vertices simultaneously have a large effective
palette size (Lemma 6.4). This does not follow from standard
concentration arguments based on bounded differences such
as Azuma’s inequality; the reason for this is that changing the
color of a single vertex could cause of cascade of color changes
in other vertices. Instead, we will use a novel argument which
estimates the palette size of a vertex in terms of certain rank
statistics of the random permutations, and then we will show
that these rank statistics are independent. In particular,
the probability that a vertex vi selects a certain color is

1
Q(vi)−Rank(vi,Nj(vi))

, where Rank(vi, Nj(vi)) is the rank of

vi among its neighbors in Cj . Rank(vi, Nj(vi)) is a random
variable that may depend on Rank(vi′ , Nj(vi′)) for some
other i′ 6= i. To achieve the independence among vertices
in Cj , we introduce global ranks, Ri, defined in Lemma
6.2. Our upper bound on the anti-degree, a(v), guarantees
that we do not lose too much when using the global rank to
approximate the local rank.

One useful lemma will be the following, which uses the reg-
ularity conditions to show bounds on the relative magnitudes
of several parameters of the almost-clique.

Lemma 6.1. Suppose the regularity conditions are satis-
fied. Then

Q(vi)− L ≥ Q(vi)δ ln(1/δ) +D ≥ D(ln(1/δ) + 1)

Proof. First since all the vertices in the almost-clique
must be a neighbor of vi or contribute to vi’s anti-degree, we
must haveM = deg(vi)+1+a(vi) ≤ Q(vi)+a(vi) ≤ Q(vi)+D.
Therefore,

Q(vi)− L
≥ Q(vi)− dM(1− 2δ ln(1/δ))e
≥ Q(vi)−M(1− 2δ ln(1/δ))− 1

≥ Q(vi)− (Q(vi) +D)(1− 2δ ln(1/δ))− 1

≥ 2Q(vi)δ ln(1/δ)−D + 2Dδ ln(1/δ)− 1

≥ 2Q(vi)δ ln(1/δ)−D
as Dδ ≥ K lnn and (1/δ) ≥ K by regularity conditions

≥ 2Q(vi)δ ln(1/δ)− δQ(vi)

as D = δZ by definition and Z ≤ Q(vi)

= Q(vi)(2δ ln(1/δ)− δ)
≥ Q(vi)(δ ln(1/δ) + δ)

for K sufficiently large

≥ Q(vi)δ ln(1/δ) +D

as Pal(vi) ≥ Z and D = δZ

To show the second inequality in the lemma, observe that
Q(vi)δ ln(1/δ) ≥ Zδ ln(1/δ) = D ln(1/δ).

6.2 Rank statistics of the random permuta-
tion

For any vertex v ∈ Cj and any subset of vertices X ⊆ Cj ,
we define Rank(v,X) to be the number of vertices x ∈ X
such that π−1(x) < π−1(v); that is, such that x comes before
v in the ordering π (and hence such that x will choose its
color before v).

Lemma 6.2. Let v1, . . . , vM be an arbitrary ordering of
the vertices of Cj.

Let Ri = Rank(vi, {v1, . . . , vi−1}). The random variables
R1, . . . , RM are independent; each Ri is a uniform discrete
random variable in the set [i] = {0, 1, . . . , i− 1}.

Proof. Note that each Ri can only take values in [i].
So, the total number of possibilities for 〈R1, . . . , RM 〉 is
1 · 2 · · · ·M = M !

Next, note that 〈R1, . . . , RM 〉 can be determined uniquely
from π, and there are exactly M ! possibilities for π. As
the mapping from 〈R1, . . . , RM 〉 to π is injective and the
two spaces have equal cardinality, it must be a bijective
mapping as well. That is, 〈R1, . . . , RM 〉 must be uniformly
selected from [1] · [2] · · · · · [M ]. This implies that each Ri is
independently chosen from [i].

Lemma 6.3. Let T = {v1, . . . , vt} ⊆ Cj and let χ(vi) de-
note the color assigned to vi. Let c1, . . . , ct be an arbitrary
sequence of colors. Then, conditioned on the random ordering
π, we have

P (χ(v1) = c1 ∧ · · · ∧ χ(vt) = ct | π)

≤
t∏
i=1

[π−1(vi) ≤ L]

Q(vi)− Rank(vi, Nj(vi))

(Recall that [π−1(vi) ≤ L] is the Iverson notation.)



Proof. Suppose without loss of generality that π−1(v1) <
π−1(v2) < · · · < π−1(vt). Now, the coloring procedure will
color v1, v2, . . . , vt in that order (as well as coloring some
additional vertices in between.)

Now suppose we come to vi, and we select a color remaining
from the palette of vi. If π−1(vi) > L, then vertex vi will
not receive any color. Otherwise, at this point the vertices
in the neighborhood of vi which appear earlier in π have
already chosen their color. There now remain at least Q(vi)−
Rank(vi, Nj(vi)) colors. As we choose any color uniformly
at random, the probability of choosing a particular color ci
is at most 1

Q(vi)−Rank(vi,Nj(vi))
.

Lemma 6.4. Suppose the regularity conditions are satis-
fied. Let T = {v1, . . . , vt} ⊆ Cj and let χ(vi) denote the
color assigned to vi. Let c1, . . . , ct be an arbitrary sequence
of colors. Suppose t ≤ D. Then we have

P (χ(v1) = c1 ∧ · · · ∧ χ(vt) = ct) ≤ (2 ln(Z/D)/Z)t

Proof. Define the event E = (χ(v1) = c1 ∧ · · · ∧ χ(vt) =
ct). If t > L, this statement is vacuously true as E has
probability zero. So, we assume t ≤ L for the remainder of
the proof.

We break the probabilistic process into two parts. First,
we select π, and then the colors for the first L vertices in the
ordering π. For each π, we apply Lemma 6.3. Integrating
over π then gives us the bound

P (E) ≤ Eπ
[ t∏
i=1

[π−1(vi) ≤ L]

Q(vi)− Rank(vi, Nj(vi))

]
For each i = 1, . . . , t, define Si = Cj − {vi, . . . , vt}, and

define Ri = Rank(vi, Si). Now consider the ordering ρ of
the vertices in which all the vertices in Cj − T come first
(in an arbitrary order) followed by v1, . . . , vt in that order.
Applying Lemma 6.2 to ρ, we see that each Ri is independent
and uniform on the range {0, . . . ,M − t+ i− 1}.

We claim that if E occurs, then we must have Ri < L−(t−i)
for all i = 1, . . . , t. Suppose that we have Ri ≥ L− (t− i)
for some i = 1, . . . , t. Then E is impossible, since there
are L− (t− i) vertices in Si which all come before vi, and
the t− i+ 1 vertices vi, . . . , vt must come before L as well.
Hence, we may assume for the remainder of this proof that
Ri < L− (t− i) for all i = 1, . . . , t.

We will lower-bound the denominator, Q(vi) −
Rank(vi, Nj(vi)). We decompose the term Rank(vi, Nj(vi))
as:

Rank(vi, Nj(vi))

= Rank(vi, Nj(vi) ∩ Si) + Rank(vi, Nj(vi) ∩ {vi+1, . . . , vt})
≤ Rank(vi, Si) + (t− i) = Ri + (t− i)

Thus,

Q(vi)− Rank(vi, Nj(vi)) ≥ Q(vi)− (t− i)−Ri (2)

We claim that the RHS of (2) is positive. For, when
Ri < L− (t− i) then Q(vi)− (t− i)−Ri ≥ Q(vi)− L, and
by Lemma 6.1 this is at least D(ln(1/δ) + 1) > 0.

Putting this together with our bound Ri < L− (t− i), we
have that

P (E) ≤ Eπ
[ t∏
i=1

[Ri < L− (t− i)]
Q(vi)− (t− i)−Ri

]
(3)

Note that the ith term in (3) depends only on the random
variable Ri. As these are all independent, we have

P (E) ≤
t∏
i=1

E
[ [Ri < L− (t− i)]
Q(vi)− (t− i)−Ri

]
Let us fix i and compute the corresponding expectation.

As Ri is uniform in the range {0, . . . ,M − t+ i− 1} we have

E
[ [Ri < L− (t− i)]
Q(vi)− (t− i)−Ri

]
=

1

M − (t− i)

L−t+i−1∑
r=0

1

Q(vi)− (t− i)− r

≤ 1

M − t+ i

(
ln

Q(vi)− t+ i

Q(vi)− L+ 1

)
Now there are two cases depending on the size of M . First,

suppose that M ≤ 3
4
Q(vi). Then

E

[
[Ri < L− (t− i)]
Q(vi)− (t− i)−Ri

]
≤ 1

M − t+ i

(
ln

Q(vi)− t+ i

Q(vi)− L+ 1

)
≤ 1

M − t+ i

( L− t+ i− 1

Q(vi)− L+ 1

)
ln(1 + x) ≤ x for x ≥ 0

≤ 1

Q(vi)− L
as L ≤M

≤ 1

Q(vi)− (3/4) ·Q(vi)
as L ≤M ≤ 3

4
Q(vi)

≤ 4

Z
as Q(vi) ≥ Z

≤ 2 ln(1/δ)/Z

for δ sufficiently small (and hence for K sufficiently large)

Otherwise, if M > 3
4
Q(vi)

E

[
[Ri < L− (t− i)]
Q(vi)− (t− i)−Ri

]
≤ 1

M − t+ i

(
ln

Q(vi)− t+ i

Q(vi)− L+ 1

)
≤ 1

3Z/4−D

(
ln

Q(vi)

Q(vi)− L+ 1

)
as t− i ∈ [0, D],M ≥ 3Z

4

≤ 1

3Z/4−D ln

(
Q(vi)

Q(vi)δ ln(1/δ) +D

)
by Lemma 6.1

≤ 1

Z(3/4− δ) ln

(
1

δ ln(1/δ)

)
≤ 2

Z
ln(1/δ)

as
3

4
− δ ≥ 1/2 and ln(1/δ) ≥ 1 for δ sufficiently small

Putting this together, we have

P(E) ≤
t∏
i=1

E

[
[Ri < L− (t− i)]
Q(vi)− (t− i)−Ri

]
≤
(

2 ln(1/δ)

Z

)t



6.3 Concentration for the number of uncol-
ored vertices

We will now show that most vertices become colored at
the end of this process. We distinguish two ways in which a
vertex v could fail to be colored: first, it may be decolored
in the sense that it initially chose a color, but then had a
conflict with an almost-clique of earlier index. Second, it
may be initially-uncolored in the sense that π−1(v) > L.

Lemma 6.5. Suppose the regularity conditions are satis-
fied. Let T ⊆ V dense and |T | ≤ D. The probability that all
the vertices in T become decolored is at most

P (all vertices in T are decolored) ≤ (2δ ln(1/δ))|T |

Proof. Write Tj = T ∩ Cj . For j = 1, . . . , n we compute
the probability that the vertices in Tj become decolored,
conditioned on the event that the vertices in T1, . . . , Tj−1

become decolored. In fact, we will not just condition on the
event that the vertices in T1, . . . , Tj−1 become decolored, but
we will condition on the complete set of random variables
involved in C1, . . . , Cj−1. (Observe that the event that Tj
becomes decolored is a function of only the colors involved in
C1, . . . , Cj .) We claim that, conditioned on all such random
variables, the event that Tj becomes decolored has probability
at most (2δ ln(1/δ))|Tj |.

For each v ∈ Tj , the event that v becomes decolored is
a union of at most d̄(v) ≤ D events of the form χ(v) = c,
where c enumerates the colors of the neighbors of v in earlier
almost-cliques. Hence, the event that all of the vertices in
Tj become decolored is a union of D|Tj | events of the form
stated in Lemma 6.4, each of which has probability at most
(2 ln(Z/D)/Z)|Tj |. Therefore, the probability that all of them

become decolored is (2(D/Z) ln(Z/D))|Tj | = (2δ ln(1/δ))|Tj |.
Now, multiplying all such probabilities, we get that the

total probability that T is decolored is at most (2δ ln(1/δ))|T |.

Lemma 6.6. Let T ⊆ V dense. The probability that all
of the vertices in T are initially-uncolored is at most
(2δ ln(1/δ))|T |.

Proof. It suffices to show that for a particular Cj , the
probability that all vertices in Tj = T ∩ Cj are initially-
uncolored is bounded by (2δ ln(1/δ))|Tj |, since there are no
dependencies between the almost-cliques.

Let M = |Cj | and L = dM(1−2δ ln(1/δ))e. We select a set
of L vertices to be colored, uniformly without replacement
from Cj . Thus, the probability that all vertices in Tj are
uncolored is:

P (vertices in Tj are all uncolored)

=

(
M−|Tj |

L

)(
M
L

) =
M − L
M

· · · · · M − L− (|Tj | − 1)

M − (|Tj | − 1)

≤
(
M − L
M

)|Tj |

=

(
M − dM(1− 2δ ln(1/δ))e

M

)|Tj |

≤
(
M −M(1− 2δ ln(1/δ))

M

)|Tj |

= (2δ ln(1/δ))|Tj |

Lemma 6.7. Suppose the regularity conditions are satis-
fied. Let T ⊆ V dense with |T | ≤ D. The probability that,
at the end of round i, T contains more than 12δ ln(1/δ)D
uncolored vertices, is at most n−100.

Proof. We separately show concentration bounds on the
number of decolored and initially-uncolored vertices in T .
Let x = 6δ ln(1/δ)D, we claim that each quantity has an

1/nΩ(1) probability of exceeding x, and this shows the claim.
By union bound over all possible sets of size x, the proba-

bility that a quantity exceeds x is bounded by(
|T |
x

)
(2δ ln(1/δ))x

≤
(
e|T |
x

)x
· (2δ ln(1/δ))x

≤
(
eD(2δ ln(1/δ)

6Dδ ln(1/δ)

)x
as x = 6Dδ ln(1/δ) and |T | ≤ D

≤
(

2e

6

)K lnn

as x ≥ Dδ ≥ K lnn

This is < n−100 for K being a sufficiently large constant.
As the total number of initially-uncolored vertices and de-
colored vertices are separately bounded by x, it follows that
their sum (the number of uncolored vertices of any kind) is
at most 2x.

Lemma 6.8. Suppose the regularity conditions are satisfied
at the beginning of round i. Then whp at the end of round i,
all the vertices satisfy the bounds

ai(v) ≤ D′, di(v) ≤ D′, Qi(v) ≥ Z′

for the parameters

D′ = 12Dδ ln(1/δ) Z′ = D ln(1/δ)

Proof. By Lemma 6.7 with T being the set of external
neighbors of v, we have that di(v) ≤ D′ holds with probability
≥ 1− n−100. Similarly, by Lemma 6.7 with T = Cj \N(v),
we have that ai(v) ≤ D′ holds with probability ≥ 1− n−100.
Thus by taking the union bound of both events over each
vertex, the probability any of them fails is at most 2n·n−100 =
n−Ω(1).

Finally, we bound Qi(v). We color at most D external
neighbors and at most L internal neighbors. Thus, at the end,
its palette has size at least Qi(v)− L−D. By Lemma 6.1,
this is at least D ln(1/δ) for K sufficiently large.

We next show how to bound the size of an almost-clique.

Lemma 6.9. Suppose that at the beginning of round i, each
almost-clique has size M = |Cj | and that the regularity con-
ditions are satisfied. Then, whp at the end of round i all
almost-cliques have size at most

M ′j ≤ max(2K lnn, 12Mδ ln(1/δ))

Proof. Let us consider some fixed almost-clique Cj . A
vertex in Cj survives only if it is initially uncolored, or
decolored. There are exactly M − L ≤ 2Mδ ln(1/δ) initially-
uncolored vertices at the end of round i, so we only need to
bound the number of decolored vertices.

Let w = K lnn and let x = max(w, 10Mδ ln(1/δ)). Note
that w ≤ D, since D ≥ K lnn. If component Cj contains
more than x decolored vertices, then Cj has at least

(
x
w

)



sets of w-tuples of decolored vertices. On the other hand, by
Lemma 6.5, each w-tuple of vertices in Cj is decolored with
probability at most (2δ ln(1/δ))w (as w ≤ D). Thus, the
expected number of w-tuples of decolored vertices is at most(
M
w

)
(2δ ln(1/δ))w. By Markov’s inequality, the probability

that there are more than x decolored vertices is bounded by

P (Cj has > x decolored vertices)

≤
(
M
w

)
(2δ ln(1/δ))w(

x
w

)
≤

( eM
w

)w(2δ ln(1/δ))w

( x
w

)w
as
(n
k

)k
≤

(
n

k

)
≤
(en
k

)k
≤
(
eM

x

)w
(2δ ln(1/δ))w

≤
(

2eMδ ln(1/δ)

10Mδ ln(1/δ)

)K lnn

≤ n−100 for K sufficiently large

By taking a union bound over all almost-cliques, we see
that whp every almost-clique has at most x decolored vertices.
Thus, whp, each almost-clique has at most 2Mδ ln(1/δ)+x ≤
max(2K lnn, 12Mδ ln(1/δ)) uncolored vertices.

7. SOLVING THE RECURRENCE
In light of Lemma 6.8, we can explicitly derive a recurrence

relation for the parameters Di, Zi.

Lemma 7.1. Define the recurrence relation with initial
conditions

D0 = 3ε∆ Z0 = ∆/2

and recurrence

Di+1 = 12Diδi ln(1/δi) Zi+1 = Di ln(1/δi)

where we define δi = Di/Zi.

Let i ≤ d
√

ln ∆e. Assuming that the regularity conditions
δj < 1/K,Dj > K lnn, Z ≥ 1 are satisfied for j = 0, . . . , i−1,
we have that whp

ai(v) ≤ Di, di(v) ≤ Di, Qi(v) ≥ Zi

Proof. The bound on Z0 is given in Lemma 5.7. By
Lemma 3.7, 3.9, we have a(v) ≤ 3ε∆, d(v) ≤ 3ε∆ in the
initial graph. The initial coloring step cannot increase these
parameters, so we have a0(v) ≤ 3ε∆, d0(v) ≤ 3ε∆ as well;
this shows the bound on D0.

A simple induction, using Lemma 6.8, shows that for all
i = 1, . . . , n, with probability ≥ 1− in−Ω(1):

ai(v) ≤ Di, di(v) ≤ Di, Qi(v) ≥ Zi

Thus, for any fixed i ≤ d
√

ln ∆e, the probability that this

fails to hold is at most (1 +
√

ln ∆)n−Ω(1) = n−Ω(1).

We will now show how to solve this recurrence.

Lemma 7.2. Recall that we set ε = C · 100−d
√

ln ∆e. We
can choose the constant term C sufficiently small so that for
all i ≤ d

√
ln ∆e we have

δi = 6ε · 12i < 1/K

Proof. For each i > 0, we may compute δi as

δi =
Di
Zi

=
12Di−1δi−1 ln(1/δi−1)

Di−1 ln(1/δi−1)
= 12δi−1

As δ0 = D0/Z0 = 6ε, we have δi = 6ε · 12i as claimed.

Thus, we have δi ≤ 6ε12d
√

ln ∆e = 6C ·
100−d

√
ln ∆e12d

√
ln ∆e ≤ 6C. By selecting C sufficiently small,

we can ensure that this is at most 1/K as desired.

Lemma 7.3. For all 5 ≤ i ≤ d
√

ln ∆e, we have

Di ≤ 12i
2/2 · 100−id

√
ln ∆e/2 ·∆

Proof. We can recursively compute Di from D0 as:

Di = D0 ·
i−1∏
j=0

12δj ln(1/δj) (4)

Thus we can estimate:

Di ≤ 3ε∆

i−1∏
j=0

(
12δ

1/2
j

)
lnx ≤ x1/2 for x > 0

≤ 3ε∆

i−1∏
j=0

(
12(6ε · 12j)1/2

)
by Lemma 7.2

= (3ε∆) ·
(

12i(6ε)i/2 · 12i(i−1)/4
)

≤ ∆ ·
(

12i(6 · C · 100−d
√

ln ∆e)i/2 · 12i(i−1)/4
)

≤ ∆ · 12i(i+5)/4 · 100−id
√

ln ∆e/2 6C ≤ 12 for C ≤ 2

≤ ∆ · 12i
2/2 · 100−id

√
ln ∆e/2 (i+ 5)/4 ≤ i/2 for i ≥ 5

Corollary 7.4. We have the bound Dd
√

ln ∆e = O(1).

Proof. We apply Lemma 7.3:

Dd
√

ln ∆e ≤ ∆ · 12d
√

ln ∆e2/2 · 100−d
√

ln ∆e2/2

≤ ∆ ·
(

12

100

)(ln ∆)/2

≤ ∆ · e− ln ∆ = 1

Expository remark: Corollary 7.4 explains why we se-
lected ε = exp(−Θ(

√
log ∆)) and ran our coloring steps for

O(
√

log ∆) rounds. Suppose instead we set ε = exp(− lna ∆)
and ran lna ∆ dense coloring steps, for some a < 1/2. At the
end of these steps, we would have Dlna ∆ = ∆ exp(− ln2a ∆).
This is close to ∆ (differing in only a sub-polynomial term),
which implies that we have hardly made any progress in
reducing the number of uncolored vertices.

Theorem 7.5. At the end of the dense coloring steps, whp

every dense vertex is connected to at most O(log n)·2O(
√

log ∆)

other dense vertices.

Proof. By Lemma 7.2, we have δi < 1/K for all dense

coloring rounds. Let i∗ ≤ d
√

ln ∆e be minimal such that
Di∗δi∗ ≤ K lnn; by Corollary 7.4 such an i∗ exists. Also,
observe that for each i ≤ i∗ we have

Zi = Di−1 ln(1/δi−1) ≥ Di−1δi−1 ≥ K lnn ≥ 1

So the regularity conditions are satisfied up to round i∗,
and hence by Lemma 7.1, we have at the end of round i∗:

di∗(v) ≤ Di∗ ≤ (K lnn)/δi∗ ≤ (K lnn) · 2O(
√

log ∆) (5)

as δi∗ ≥ ε ≥ 100−
√

log ∆



This shows that the external degree of each dense vertex is

at most O(log n) · 2O(
√

log ∆) at the end of the dense coloring
steps.

Next, we bound the size of each almost-clique. As we
satisfy the conditions δj < 1/K,Djδj ≥ K lnn for j < i∗,
we can apply Lemma 6.9 repeatedly to deduce that the
size of any almost-clique has been reduced from its ini-
tial size (at most (1 + 3ε)∆) to O(max(2K lnn, (1 + 3ε)∆ ·
(
∏i∗−1
j=0 12δj ln(1/δj)))); the probability this fails in an indi-

vidual round is n−Ω(1) and thus the total failure probability
over each clique and over i∗ ≤ d

√
ln ∆e rounds is also n−Ω(1).

Thus, we need to bound the term (1 + 3ε)∆ ·
(
∏i∗−1
j=0 12δj ln(1/δj)) which we do as follows:

(1 + 3ε)∆ ·
i∗−1∏
j=0

(12δj ln(1/δj))

= (1 + 3ε)∆ · 1

D0

(
i∗−1∏
j=0

12δj ln(1/δj)

)
·D0

= (1 + 3ε)∆ · Di∗
3ε∆

by (4) and D0 = 3ε∆

≤ (1 + 3ε)K lnn

3ε
· 2O(

√
log ∆) by (5)

= O(logn) · 2O(
√

log ∆) as ε = C · 100−d
√

log ∆e

Since a dense vertex v has at most O(logn) · 2O(
√

log ∆)

external neighbors and the clique size is also bounded by

O(logn) · 2O(
√

log ∆), it can have O(logn) · 2O(
√

log ∆) neigh-
bors.

We have shown that after the d
√

ln ∆e dense coloring steps,
the number of dense neighbors of each dense vertex shrinks

to O(logn) · 2O(
√

log ∆). Also, for each sparse vertex x, we
have Qd

√
ln ∆e(x) ≥ degd

√
ln ∆e(x) + Ω(ε2∆) due to the initial

coloring step. By applying the algorithm of Elkin, Pettie, and
Su [12, Section 4] on the sparse component, it can be colored

in O(log(1/ε)) + 2O(
√

log logn) = O(
√

log ∆) + 2O(
√

log logn)

rounds. Then, we apply the algorithm of Barenboim et al. [9]
to color the remaining vertices whose degree are bounded

by ∆′ = O(logn) · 2O(
√

log ∆). It then runs in O(log ∆′) +

2O(
√

log logn) = O(
√

log ∆) + 2O(
√

log logn) rounds. The total

number of rounds is O(
√

log ∆) + 2O(
√

log logn).

8. LIST-COLORING LOCALLY-SPARSE
GRAPHS

Although the overall focus of this paper is an algorithm for

coloring arbitrary graphs in time O(
√

log ∆) + 2O(
√

log logn),
we note that our initial coloring step may also be used to
obtain a faster list-coloring algorithm for graphs which are
sparse. This result extends the work of [12], which showed a
similar type of (∆ + 1)-coloring algorithm for sparse graphs.

In [12], a slightly different definition of sparsity was in-
troduced, known as local sparsity. We define this and show
that it is essentially equivalent to the definition of sparsity
defined in Section 3.

Definition 8.1. We say that a graph G is (1− δ) locally
sparse if very vertex contains at most (1− δ)

(
∆
2

)
edges in its

neighborhood, for some parameter δ ∈ [0, 1]. (That is, the
induced subgraph G[N(v)] contains ≤ (1− δ)

(
∆
2

)
edges).

Lemma 8.2. Suppose that G is (1−δ)-locally sparse. Then
if we apply the network decomposition of Section 3 with
parameter ε = δ/2, then every vertex is sparse, i.e. V sparse =
V .

Proof. Suppose that v ∈ V is dense with respect to ε.
Then v has at least (1 − ε)∆ friends. Each such friend u
corresponds to at least (1− ε)∆ edges between u and another
neighbor of v, that is, an edge in G[N(v)]. Furthermore, any
such edge in G[N(v)] is counted at most twice, so G[N(v)]
must contain (1− ε)2∆2/2 ≥ (1− 2ε)

(
∆
2

)
edges, which con-

tradicts our hypothesis for ε ≥ δ/2.

Corollary 8.3. Suppose that G is (1− δ)-locally-sparse
and that every vertex has a palette of size exactly ∆ + 1.

Then G can be list-colored whp in O(log(1/δ)) + 2O(
√

log logn)

rounds.

Proof. By Proposition 8.2, every vertex in G is sparse
with respect to parameter ε = δ/2. Suppose that δ4∆ ≥
K lnn, where K is a sufficiently large constant. Then, by
Lemma 5.8, each vertex satisfies at the end of the initial
coloring step d0(v) ≥ Q0(v) + Ω(ε2∆) whp. Now, apply
the algorithm of [12] to the residual graph; this runs in

O(log(1/δ2)) + 2O(
√

log logn) rounds.
Next, suppose that δ4∆ ≤ K lnn. So ∆ ≤ Kδ−4 lnn.

Then run the coloring algorithm of [9], which runs in

O(log ∆) + 2O(
√

log logn) = O(log(1/δ)) + 2O(
√

log logn)

rounds.
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