
Processing Encrypted and Compressed
Time-Series Data

Matúš Harvan , Samuel Kimoto , Thomas Locher , Yvonne Anne Pignolet , Johannes Schneider
Enovos Luxembourg S.A., matus.harvan@enovos.eu

Open Systems, ski@open.ch
ABB Corporate Research, {thomas.locher,yvonne-anne.pignolet}@ch.abb.com

University of Liechtenstein, johannes.schneider@uni.li

Abstract—Numerous applications, e.g., in the industrial sector,
produce large amounts of time-series data, which must be stored
and made available for distributed processing. While outsourcing
data storage and processing to third-party service providers offers
many benefits, it raises data privacy issues. In light of this
problem, techniques have been proposed to share only encrypted
data with the remote service provider, yet the capability to run
meaningful queries over the data is preserved. However, time-
series data is typically compressed at the server to save space,
which is not easily possible when dealing with encrypted data.
Moreover, data must be compressed in such a way that queries
can still be executed efficiently.

As a first step in this direction, we present an approach that
preserves data privacy, enables compression at the server, and
supports querying of the stored data. Our evaluation using real-
world time-series data shows that our compression mechanism
can reduce the required space drastically. Moreover, the median
running time of all considered queries increases marginally,
implying that compression can be introduced without sacrificing
performance of query execution.

I. INTRODUCTION

Time-series data, i.e., periodic time-stamped measurement
data, plays an important role in various applications for data
analysis and forecasting. As data is produced steadily, with
a periodicity in the sub-second range for many industrial
applications, providing the necessary facilities to store and
process it can become a burden. A cost-effective and conve-
nient approach is to outsource data storage and processing to a
third-party service provider. Thus, the devices producing data
are integrated into a distributed system comprising storage and
processing nodes, which are offered as a service. However, as
the service provider has full access to all data, this approach
is encumbered by privacy concerns: companies from various
industries are reluctant to provide access to their data since it
can contain confidential information, e.g., about the state of
operation, or it may reveal sensitive information concerning
the devices producing the data, e.g., parameters of control
algorithms.

Naturally, simply encrypting all data using standard encryp-
tion tools before the data leaves the data owner’s premises is
not a satisfactory solution as it prevents any meaningful com-
putation at the service provider. Several techniques have been
proposed to carry out certain computations without revealing
the data, such as homomorphic encryption or multi-party
computation, and systems have been built for this purpose.
Noteworthy examples are CryptDB [15] and MONOMI [18],

which enable data processing in a privacy-preserving manner,
at the cost of a computational overhead that is shown to
be small in benchmark tests. These systems offer features
that are highly useful for time-series analysis, in particular
deterministic and order-preserving encryption (OPE), which
enable range queries.

However, privacy-preserving systems proposed so far fall
short of providing an important feature for time-series data
management: compression at the server side. As mentioned
before, data volumes are usually high, and the potential for
compression is large as well because the generated time-series
data often contains many repetitions for a wide range of
(industrial) applications. Therefore, a practical system must
support compression, otherwise the space overhead compared
to a system without privacy protection becomes exceedingly
large. Moreover, the addition of compression must not result in
a large increase of query execution times. Thus, cryptographic
techniques must be combined carefully to preserve computa-
tional efficiency and data privacy while offering compression.

The contributions of our work are the following. We
present an approach to store encrypted and compressed time-
series data and execute queries over this data efficiently. To
this end, we employ a novel combination of a partially ho-
momorphic -probabilistic encryption scheme with an order
preserving module. Partially homomorphic encryption and or-
der preservation are required to run queries over the encrypted
data. We introduce the notion of -probabilistic encryption,
which has the desired property of protecting even low-entropy
data while enabling data compression. A noteworthy feature
of our approach is that clients can encrypt and prepare data
and queries in a manner that enables the server to use standard
techniques for compression and query processing. We describe
an implementation of a practical system reconciling the some-
what conflicting requirements concerning confidentiality and
space and computational complexity. Furthermore, we provide
a thorough evaluation, focusing both on security and on the
compression rate and query execution time. In order to obtain
practically relevant results, we used real time-series data from
a solar plant and a wind farm for our experiments.

The paper is structured as follows. §II describes the model
of the system and the attacker model. Our approach is pre-
sented in §III. The security and performance evaluation are
given in §IV and §V, respectively. Related work is summarized
in §VI, and §VII concludes the paper.

Operator Application
, BETWEEN, ORDER BY, MIN, MAX, SORT

IN, DISTINCT, equality JOINS, GROUP BY
count Count operator

sum, mean, var Summation, mean and variance operators for numerical data

TABLE I: Table of supported query operators.

II. MODEL

For the sake of simplicity, we consider a simple distributed
setup consisting of a single client communicating with a
remote server. Extending the scenario to multiple clients and
servers is straightforward. The client produces time-series data
to be inserted in the database at the server and initiates queries
to be answered by the server.

Time-series data are modeled as a stream of data items
, where each is a feature vector. The value of

the feature of the data item is denoted by . Time-
series data often has a relatively small entropy: it contains
many repetitions, including multiple repetitions in a row, so-
called runs, implying that the data is amenable to compression.
What is more, only a small fraction of all possible values—e.g.,
all 32-bit or 64-bit numbers—occurs in the data stream. Our
approach targets exactly such data sets, i.e., the data stream
must have these properties for our approach to be effective.
Real-world examples of such data sets are used in our practical
evaluation (see §V).

The database supports queries of the following basic
form:

SELECT WHERE

where is a column (feature) and is a predicate that
returns either true or false. The function can be the identity
operator, returning all values for which the predicate condition
is satisfied, or an aggregation operation such as sum or count.
The predicates are built using, e.g., comparisons or range
checks. See Table I for a list of the operators that can be
used to build queries. Note that mathematical operations are
only permitted in the function and not in the predicates.1
This is a common limitation (see, e.g., [15]) when processing
encrypted data due to the non-determinism in homomorphic
encryption schemes: when adding up ciphertexts corresponding
to plaintexts and homomorphically, the resulting ciphertext
is not always identical to a ciphertext obtained when encrypt-
ing . We find that many practically relevant queries can
still be carried out despite this restriction. In particular, when
using order-preserving encryption, it is possible to determine if
values are in a certain range, e.g., using a clause of the form
WHERE or comparisons of different
values of the form WHERE .

Requirement 1 (Query processing): The server must sup-
port range queries with aggregation operations.

The server is not fully trusted: We assume a passive
attacker in the honest-but-curious model where the server
follows the protocols faithfully, i.e., it stores all data and does
not tamper with it, and executes queries correctly, but it tries
to learn as much as possible about the data. Consequently,

1For example, it is not allowed to define a clause of the form WHERE
.

data needs to be encrypted before being transmitted to the
server. Thus, an attacker may only learn something about the
data by observing the queries and the returned (encrypted)
results. Such a passive attack model is realistic because a more
malicious attacker is more likely to be detected when changing
the data or query results.

In order to enable the server to process such queries
efficiently and securely, the encryption scheme ,
where is the key generation function, encrypts plain-
texts, and decrypts ciphertexts with the appropriate keys,
must have certain properties. Given the fact that the entropy of
the data is small, deterministic encryption cannot be used, oth-
erwise an attacker is likely to find plaintext-ciphertext pairs by
simply encrypting candidate plaintexts [4]. On the other hand,
if probabilistic encryption is used, potential for compression
and efficient (range) queries is lost. As a customizable trade-
off, we require the encryption scheme to be -probabilistic,
which upper bounds the number of (probabilistically com-
puted) ciphertexts for each plaintext to . Formally, let
denote the set of all ciphertexts that generates for fixed
parameters , , and , then it holds that for all

in the plaintext space. Modifying affects the trade-off
between security and compressibility: the larger , the less
the server can learn about the data and the more ciphertexts
need to be stored. Note that can be chosen independently
for each user or for each use case. For numerical values,
additional properties need to be satisfied. must be additively
homomorphic for the computation of sum, var, mean,
i.e., for plaintexts and a
homomorphic addition operator .

Requirement 2 (Encryption scheme): A suitable -
probabilistic encryption scheme must be additively
homomorphic and withstand chosen plaintext attacks.

Furthermore, the server must be able to compare encrypted
values, i.e., there must be a total order on the ciphertexts: For
any pair of plaintexts it must hold that

. Moreover, merely the order between ciphertexts that a
particular client has created can be determined by the server as
otherwise an attacker could identify plaintexts by determining
the order between the client’s and the attacker’s encrypted data.
For example for numerical data, the attacker could compare the
order of its own generated ciphertexts corresponding to the
numbers to a ciphertext encrypted by the client in
order to determine the plaintext that corresponds to .

Requirement 3 (Order preservation): The server learns the
order of ciphertexts if and only if the ciphertexts were created
by the same client.

Given this model, the goal is to minimize the space
required at the server to store the data, yet the capability
to execute queries efficiently must be preserved. Note that
simply compressing all data minimizes the required space but
query running times would increase tremendously as the entire
database would have to be decompressed before queries can
be answered. Moreover, even though the server has full access
to the database, it must learn as little as possible about the
data.

Fig. 1: Overview of components and their interactions.

III. SYSTEM

In this section, we present our proposed approach to
process time-series data efficiently in a privacy-preserving
manner. After giving an overview in §III-A, the client and
server parts are discussed in §III-B and §III-C, respectively.

A. Overview

The client produces data and initiates queries to be pro-
cessed by the (untrusted) server. The client part includes the
user, the application module, and the crypto module. The
application module is used to produce data and initiates queries
before sending them to the crypto module. The crypto module
operates at the interface between the client and the server,
residing at the client side. Its main purpose is to uphold data
confidentiality. To this end, it encrypts each feature vector
before sending it to the server. Moreover, since the server
only stores encrypted data, it rewrites the client’s queries into
queries that the server can process. The user must authen-
ticate to the crypto module to use the system. The server
compresses the encrypted data, stores it, and processes the
rewritten queries. To this end, it uses an order-preserving
module (OPM) that maintains a total order of all ciphertexts
known to the server. Figure 1 depicts the components and how
they interact with each other. The crypto module constitutes
our main contribution. In the remainder of this section, the
most important components and mechanisms are described in
more detail.

B. Client Crypto Module

The crypto module resides on the client side and consists of
four components: key storage, encryptor, decryptor, and query
rewriter. We will now discuss their functionality.

Authorization. The crypto module ensures that only autho-
rized users can use the system. To this end, the key storage
component authenticates the user and generates and stores the
encryption and decryption keys for that particular user. User
authentication works as follows: The user (at the client) sends

its credentials to the client crypto module, and the crypto
module verifies them. If the user is authorized, it loads the
keys associated with the user’s credentials.

Encryption Scheme. We assume that the client crypto module
has the means to create cryptographically strong key material
and random bit strings. The crypto module makes use of a
pseudo-random number generator and an IND-CPA-secure2

probabilistic encryption scheme . A probabilistic
encryption scheme is probabilistic in the sense that the encryp-
tion function takes a random component as a parameter,
which entails that generates different ciphertexts even for
the same plaintext input (with high probability).

The encryption scheme is transformed into a -
probabilistic encryption scheme as follows. The key generation
function remains the same, except for the fact that a
random bit string is generated in addition. A plaintext

is encrypted by using the pseudo-random number gen-
erator with the parameters , , and to generate
random components and then choosing any ,

, uniformly at random as input for together
with . The decryption function remains unchanged.
is a -probabilistic encryption scheme as at most dif-
ferent ciphertexts are output for any plaintext by design.
Since any (valid) random component can be used so that

, it follows immediately that the decryption
function is also correct for any of the random components
that are computed deterministically for given , , and . If
an additively homomorphic probabilistic encryption scheme is
turned into a -probabilistic encryption scheme, it is easy to
see that the resulting scheme is additively homomorphic as
well.

Encryption of Runs. Typical time-series data are repetitive,
i.e, measurements within a certain interval of time tend to
have the same value, creating so-called runs of the same
value in the data stream. The encryptor encrypts equal values
occurring within a run with the same ciphertext by using the
same random component in the encryption function during the
run. This technique allows the server to leverage runs during
compression. Note that this enables the server to learn how
many times the same value occurred in a row. This leakage of
information can be reduced by breaking runs up into shorter
sub-runs and using different ciphertexts for different sub-runs.
This straightforward mechanism enables a customized trade-
off between confidentiality and compressibility.

Caching. Encryption and decryption are computationally
expensive, yet a simple caching mechanism can speed them
up. The encryption algorithm caches newly encountered pairs
of plaintext and ciphertext index , together
with the corresponding ciphertext. The cached value is used
whenever an entry is found in the cache; otherwise, the
encryption is performed as described above. The decryption
algorithm also uses the cache, which improves performance
especially for queries that require a lot of decryption.

Query Rewriting. The query rewriter receives a query
generated by the client and outputs a transformed query ready
for processing by the server. The transformation consists in

2Informally, an encryption scheme is indistinguishable under a chosen
plaintext attack, where every probabilistic polynomial time adversary cannot
guess well for a given ciphertext which of two plaintexts it encrypts.

SELECT sum(), mean()
WHERE = 10 AND
BETWEEN 20 AND 25

GROUP BY x
ORDER BY y

SELECT paillier_sum(),
paillier_sum(), count()
WHERE IN [,]
AND IN [,]
GROUP BY
ORDER BY

Fig. 2: An example query (left) and the corresponding encrypted query (right).

encrypting the column names and the constants in the query,
mapping the plaintext operations to their ciphertext counter-
parts, and transforming all the predicates in the WHERE clause
of the query into range predicates by exploiting the order re-
lation defined on the ciphertexts. This transformation prevents
the server from learning the formulation of the predicates in the
original query. As depicted in Figure 1, a transformed query
can consist of multiple sub-queries that must be
executed first and whose results must be returned before the
main query is executed. An example of a plaintext query
and its encrypted counterpart is given in Figure 2.

C. Server

The server contains three modules: the compressor, the
order-preserving module (OPM) enabling it to carry out range
queries, and the database itself. Each module is based on
standard techniques, i.e., no special hardware or software is
necessary to benefit from our approach, and other compression
and query processing methods than the ones described in
the evaluation section could be used as well. The database
on the server comprises a single table where each column
represents a type of measurements. A column contains all
feature vectors in compressed form and a bitmap index (BI).
Upon reception of a feature vector, the database updates the
BIs associated with the columns. The BIs help in the query
processing to minimize the data that needs to be decompressed.
In order to save space, the BIs are compressed as well. We now
describe the functionality of the main components in more
detail.

Compressor. The server compresses the data it receives before
storing it to reduce the growth of the database size. The
compressor receives a stream of data items and compresses
it in batches of several feature vectors, which are then stored
in the database. Finding the “right” batch size is a difficult
problem because a larger batch size generally increases the
potential of compression and a smaller batch size can be
advantageous for partial decompression and fast insertion.
However, more I/O operations are needed when processing
queries and the available memory is not used efficiently if the
batch size is too small [7]. Thus there is a trade-off between
the disk-size used and data processing operation speed.

Aliasing. In order to reduce disk-space utilization, an aliasing
scheme is used to cope with the fact that ciphertexts are
large. An ordered dictionary with the ciphertexts as keys is
constructed by the server to limit the ciphertext occurrences to
the strict minimum. For each ciphertext obtained, the
server checks whether is in the dictionary. If it is not,
the ciphertext is given an alias and the key
and its value are inserted into the dictionary. Since
the dictionary is ordered, both the key and the value can be

retrieved easily from one another. In our system, is
simply the value of a counter that is incremented for each new
ciphertext. The aliases of the E() of column are
grouped together in batches, which are compressed and then
stored in the database.
Order-Preserving Module (OPM). We define the follow-
ing total order relation on ciphertexts: Let and be
any ciphertexts corresponding to plaintexts and

and let and be the random numbers used
in to generate these ciphertexts. We define that
if either or (and). Thus, the order
does not correspond to the numerical interpretation of the
ciphertexts. Since for any , we further
define and . The server cannot
determine the total order on the ciphertexts the client generated
on its own, yet it must know the order to process queries, which
contain WHERE clauses in the form of range predicates. The
OPM maintains the total order relation among the database
entries by means of a simple interactive OPE scheme that uses
a binary search tree to encode order [14]. We introduced a
straightforward modification to this scheme: Rather than using
the ciphertexts in both the OPE tree and look-up table, their
aliases are used.

Requirement 3 states that the server (or an attacker) may
only learn the order relation between two ciphertexts and
if they are both generated by the same client. This requirement
can be satisfied in multiple ways. The client can keep track of
recent data items that were sent to the server for insertion and
the data items involved in recently issued queries for which
order must be determined. The client will only provide help
to insert them into the OPE structures for these data items. A
stateless alternative is to verify that the ciphertext that is to be
inserted originally came from the client for each request, e.g.,
by having the client sign ciphertexts [2]. While this approach
does not require the client to maintain state, the computational
cost is higher.
Data Insertion. The data insertion mechanism works as
follows. Feature vectors are sent from the application to the
encryptor at a fixed rate. At the encryptor, each vector is
encrypted and the encrypted vector is sent to the server. At the
server, the BIs are updated and the encrypted vectors are kept
in memory until the next batch is complete. At this point, the
batch is compressed and stored. In addition, the OPM makes
sure that the encrypted vector is inserted into the OPE tree.
Query Processing. Once data is inserted in the database,
users must be able to run queries to retrieve information out
of the data. Before a user query is sent to the server, the
client crypto module uses the query rewriter to rewrite the
query as described in §III-B. When receiving a (transformed)
query, the database uses the bitmaps to determine which

rows meet the range constraints. Subsequently, the database
determines in which batches the matching rows are located.
These batches are then decompressed and the corresponding
rows are extracted. Finally, the result of the aggregate function
in the SELECT statement is computed homomorphically over
all returned (encrypted) data. The result is then transmitted
to the client’s crypto module, where it is decrypted, and the
plaintext result is made available to the client.

IV. SECURITY ANALYSIS

As described in the model section, the threat model we
use for our design assumes that an attacker is in control of the
server side. Therefore, as depicted in Figure 1, only encrypted
feature vectors and queries are sent from the client to the server
and thus sensitive data is never available in plaintext at the
server.

IND-CPA Security. We start by showing that the encryption
protects the data in the sense that the -probabilistic encryp-
tion scheme is IND-CPA secure, as required by Req. 2, if
the underlying probabilistic encryption scheme is IND-CPA
secure. We assume that the pseudo-random number generator

that is used to generate the random input to generates
bit strings that cannot be distinguished from truly random
bit strings. Formally, for any , , and , we assume that

is indistinguishable from any set
, , chosen uniformly at random from the set

of all valid random inputs to . For the sake of contradiction,
assume that there is a chosen-plaintext attack where an attacker
first encrypts a set of chosen plaintexts and then receives
the ciphertext challenge , where .
Since is essentially random, an attacker that is able to
identify with probability substantially larger than can use
the same attack to identify for the underlying probabilistic
encryption scheme, which contradicts the assumption that the
underlying scheme is IND-CPA secure. Note that the fact
that the same ciphertext can re-occur for the -probabilistic
encryption scheme does not help the attacker.

Plaintext Runs. How much is revealed about the plaintext by
the encryption of runs depends on the properties of the data. If
runs occur only for a few plaintext values, then it is necessary
to break these runs into short sub-runs, use a large enough ,
and encrypt the sub-runs separately. Otherwise an attacker can
guess which values are encrypted in runs. However, for data
where many values occur in runs (Req. ??) and the expected
lengths of the runs of different values do not vary much, the
proposed scheme does not enable the attacker to learn the
values of encrypted runs.

Plaintext Distribution. Due to the -probabilistic scheme,
neither the plaintext frequency distribution nor the exact num-
ber of distinct plaintext values can be learned. The larger ,
the less the ciphertexts reveal about the plaintexts. Figure 3
illustrates the frequency of ciphertexts for for
normally distributed data of a plaintext domain with 1000
elements. For the most frequent ciphertext occurs
2.8 more often than the median element which is picked
with probability as expected. For , at most

different ciphertexts are possible and the most frequent
one among them appears roughly as often as the most
frequent ciphertext for . In other words, the curves are

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 500 1000 1500 2000 2500 3000

Fr
eq

ue
nc

y
[%

]

K=1
K=2
K=4
K=8

Fig. 3: Frequency distribution plot of -probabilistically en-
crypted normally distributed data. Given a set of plaintexts
drawn according to a discretized normal distribution of 1000
elements, the corresponding ciphertexts were produced with
varying values for . The frequency of the ciphertext occuring
most often is depicted on the left of the plot. Observe that
the gradient of the plotted lines approximates zero as is
increased.

flatter for higher values of , i.e., the distribution becomes
closer to the uniform distribution. This can also be seen by
considering the min-entropy of the ciphertext distributions
which grows logarithmically with . If there are distinct
ciphertexts in the database on the server, the number of distinct
plaintexts lies in the range . Therefore, it is not
possible for the attacker to figure out exactly which range of
ciphertexts corresponds to the same plaintext.

Range queries with OPM. Since range queries are sup-
ported (Req. 1), the server can learn the order of all ciphertexts
encrypted by the client from the OPM. However, the server
cannot infer order information for additional ciphertexts it
generated itself for chosen plaintexts because the client only
reveals order information to the OPM with a mechanism
checking the authenticity of the ciphertexts (either maintaining
some state at the client or with a signature mechanism). Thus,
Req. 3 is satisfied and the attacker cannot learn how the client’s
ciphertexts are ordered with respect to other values. Moreover,
as only a small subset of all possible values in the domain are
ever stored in the OPM (Req. ??), an attacker cannot reliably
match the sorted ciphertexts to plaintext values. Queries reveal
what columns or specific ciphertexts are requested, with all
WHERE clauses in the form of range queries.

V. PERFORMANCE EVALUATION

The performance of our system is analyzed in this section,
focusing on the effectiveness of our compression mechanism
and the impact on the time required to insert data and run
queries. After discussing the setup of our evaluation environ-
ment, we present and discuss our experiments with respect to
compression and running times.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 10 100 1000

C
om

pr
es

si
on

ra
tio

K

Aliasing
RLE-Aliasing

RLE
GZip-Aliasing

GZip

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 10 100 1000

C
om

pr
es

si
on

ra
tio

K

Aliasing
RLE-Aliasing

RLE
GZip-Aliasing

GZip

Fig. 4: Compression ratio as a function of for SPP (left) and WPP (right) data.

A. Setup

Since the crypto module and the server are the two key
system components, we evaluate their performance exclusively.
Both components were executed on the same machine, i.e.,
overhead due to communication over a network is not con-
sidered. This omission is not crucial whenever the amount of
data that is transferred at a time is relatively small, e.g., when
transferring a feature vector or running a query returning a
few 1000 entries or less as a result. In this case, the running
time for computation on encrypted data typically exceeds the
data transfer times by far. On the other hand, if there is little
bandwidth and the query returns a large portion of the database,
the query execution time is large in any case, which entails
that the end-to-end overhead of our system is actually smaller.
The experiments were conducted on computers with an i5-
4570 quadcore CPU at 3.2 GHz with 8GB of RAM. As the
basis for the -probabilistic encryption scheme, we use the
probabilistic and additively homomorphic Paillier encryption
scheme [13]. The ciphertexts are generated with a 1024-bit key,
which yields 2048-bit ciphertexts in the Paillier cryptosystem.

Data from real-world wind and solar power plants (WPP
and SPP) were used to evaluate the system. The feature vectors
contain 22 and 25 features for SPP and WPP data, respectively.
These features are numerical values for the voltage, current,
and power produced by the power plants as well as numerical
parameter settings, sensor values and error codes, encoded
as integers and floating-point numbers. Since Paillier expects
integer values, we encoded floating-point values as integers
using fixed-point arithmetic. Typically a low number of bits
suffices to achieve highly accurate results (see, e.g., [12]), and
the overhead in terms of additional bits required for the fixed-
point representation is easily offset by the fact that ciphertexts
are larger than plaintext values. We started with an empty
database and inserted 100,000 feature vectors in total. This
number of vectors is large enough to get a representative
picture of the entire data set. The SPP data is an ideal
time-series test case because it contains many repetitions for
various features, which lends itself nicely to our encryption
and compression mechanism. The WPP data has substantially
fewer repetitions and more distinct values, i.e., the entropy
is considerably higher. Thus, analyzing the behavior of our

system for both data sets allows us to assess the negative effect
on compression rate and running times when dealing with more
volatile time-series data.

We constructed a set of queries inspired by the TPC-H
benchmark3. The original queries in the benchmark needed
to be adapted for our data sets. In particular, the name and
number of columns and also the operations executed on the
data needed to be adjusted. In total, we built two groups of
queries, the second group being equivalent to the first one
except for the fact that aggregation operations are performed
on the result set(s), i.e., one or more aggregate operators listed
in Table I are applied to the data satisfying the WHERE clauses.

B. Compression

We evaluate our compression mechanisms by measuring
the achieved compression ratio, which is simply the ratio
between the space required for the compressed database and
the database without compression.

Apart from the data itself, the compression ratio depends
on the parameter , which defines how many ciphertexts can
exist at most for a given plaintext. We consider the influence
of when studying the compression ratio for the following
five compression schemes:

RLE: based on the run-length encoding scheme
RasterZip [7].

GZip: standard compression utility based on the
Lempel-Ziv algorithm [22].

Aliasing: described in §III-C.

RLE-Aliasing: combination of RLE and Aliasing.

GZip-Aliasing: combination of GZip and Aliasing.

Note that the bitmap indices are always compressed using
the Word-Aligned Hybrid (WAH) compression scheme [20],
which offers efficient compression of bitmap indices even in
case of high-cardinality features. Moreover, it supports bitwise
operations for querying without prior decompression.

3See http://www.tpc.org/tpch/.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

Initial Aliasing Gzip-Aliasing LB

Si
ze

[k
B]

Data
OPE

Bitmap Indices
Dictionary

Lower Bound (LB)

 0

 20000

 40000

Aliasing Gzip-Aliasing LB

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

Initial Aliasing Gzip-Aliasing LB

Si
ze

[k
B]

Data
OPE

Bitmap Indices
Dictionary

Lower Bound (LB)

 0

 20000

 40000

Aliasing Gzip-Aliasing LB

Fig. 5: Breakdown of the space requirements of individual database components for SPP (left) and WPP (right) data and .

While optimizing the batch size is typically not a trivial
task, we found that its impact is relatively small in our case.
Therefore, we used a fixed size of 4000 vectors per batch,
which yields good results in our experiments. In the evaluation
we compare the performance of five compression schemes.

Intuitively, one expects the compression ratio to degrade
as increases because a larger entails a larger cardinality
of the data set. Figure 4 depicts the effect of increasing for
SPP and WPP.

The key observation is that aliasing has a strong effect on
the compression ratio due to the fact that ciphertexts are much
larger than their aliases. By storing each ciphertext only once,
the biggest reduction in the required space is achieved. When
using aliasing alone, an improvement of roughly 72% (85%)
over GZip can be achieved for SPP (WPP) data regardless of

. GZip or RLE alone is not sufficient, particularly for WPP
data where the compression ratio is worse than for large .
The graphs also reveal that GZip generally outperforms RLE.
The compression ratio can further be improved by combining
aliasing with RLE or GZip but the additional gain is relatively
small at up to 10% because the ciphertext themselves cannot be
compressed. This gain shrinks when increasing , in particular
for the WPP data where the gain drops to less than for

. The graphs confirm the intuition that increasing
has a negative effect on the compression ratio, in particular for
high-entropy data (such as the WPP data).

Four components contribute to the total database size: the
data, the OPE data structures (OPE tree and lookup table [14]),
the bitmap indices, and the dictionary mapping bitmap indices
to ciphertexts. Figure 5 depicts the breakdown for .
Without aliasing, the data component requires by far the most
space, followed by the OPE data structures, because these
structures store ciphertexts. The third largest component is
the aforementioned dictionary. When aliasing is used, the
ciphertexts in the data component and the OPE data structures
are replaced with pointers into the dictionary. As a result, both
of these components shrink substantially: For SPP and WPP
data, the compression ratio of the data and OPE component is
approximately 0.0043 and 0.045, respectively. At this point, the
aliasing dictionary requires most space. The only component
that can be compressed further is the data component because

the dictionary contains high-entropy ciphertexts and the bitmap
indices and the OPE are already compressed using WAH
and GZip, respectively. A final compression ratio of 0.0006
is achieved for the data component when combining Gzip
compression and aliasing.

An important question is if we could potentially do better.
The last “bin”, denoted by LB, addresses this question in that
it shows a lower bound on the space requirement, which is
simply the number of distinct values in the database times the
size of a ciphertext. When applying aliasing and GZip, the
space requirement is merely a factor of 1.22 (1.71) larger than
this lower bound for SPP (WPP) data. The same experiment
has been repeated for , resulting in a factor of 1.80
and 29.56 for SPP and WPP data, respectively.

Since the dictionary takes up most of the space and its
size grows linearly with the number of distinct ciphertexts,
the database also grows linearly with . The slow increase of
the compression ratio in Figure 4 is due to the fact that almost
all runs are encoded with different ciphertexts for a small
already, and further increasing does not have a significant
impact for the same data set. In general, must be set to a
small value to keep the compression ratio low.

C. Running Time

Next, we examine the running time of data insertion and
query processing, again depending on the parameter .

Cryptographic Operations. Before adding a new value to
the database, it needs to be encrypted and inserted into the
OPE data structures. After a query from the client has been
processed on the server, one or several values of the result set
need to be decrypted. We analyze the duration of the crypto-
graphic operation time for five hundred feature vectors taken
from the SPP data set for and . The results
of this evaluation are presented in Table II. We observe that
the duration of cryptographic operations is largely unaffected
by the choice of . On the other hand, caching substantially
reduces the mean duration since a proper encryption operation
is only needed for newly encountered values and many of
the decryption operations are replaced by lookups. However,
increasing counteracts the positive effect of caching because

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500 600

D
ur

at
io

n
[m

s]

K

WPP
SPP

 0

 20

 40

 60

 80

 100

2 512

D
ur

at
io

n
[m

s]

K

Encryption and OPE
Database structures

 0

 20

 40

 60

 80

 100

2 512

D
ur

at
io

n
[m

s]

K

Encryption and OPE
Database structures

Fig. 6: Average duration of insertion per row as a function of (left). Breakdown of running time for SPP (center) and WPP
(right) of insertion per row into encryption and OPE and DB maintenance, for and .

Before insertion [ms] After query [ms]
without cache with cache without cache with cache

2 9.59 4.19 (43.7%) 15.9 4.9 (30.8%)
128 9.52 5.73 (60.2%) 16.1 6.3 (39.1%)

TABLE II: Duration of cryptographic operations for data
preparation (encryption and OPE insertion) before inserting
feature vectors into the database and after query processing
(decryption), per feature vector in milliseconds, with and
without caching.

a larger implies that there are more distinct ciphertexts,
resulting in more cache misses.

Data Insertion. The more distinct ciphertexts have been
inserted into the database, the higher the cost of database
maintenance, which encompasses all operations related to the
used data structures (bitmap indices and the dictionary). In
other words, all operations not related to encryption or the
OPM are considered database maintenance operations. Having
studied the cost of encryption and OPE insertion, we now
examine the cost of the entire data insertion process.

Figure 6 shows a slow increase in data insertion duration
with respect to for the SPP data. In this data set, most of the
features contain sequences of long runs while the rest contain
distinct values at each row. This composition means that the
second group of features is responsible for most of the duration
of data insertion. Thus, has no impact on their encryption
and their contribution to database maintenance. The increase in
duration is due to the long runs. Caching minimizes the impact
of on encryption and therefore on data insertion duration.
Since the data contains long runs, the number of different
ciphertexts used per plaintext is small, thereby also mitigating
the impact of on database maintenance and therefore on the
total data insertion duration.

On the other hand, for WPP data, a sharp increase can be
observed in data insertion duration when varying . There
are no columns that contain distinct values at each row in
the WPP data set. Many columns contain many short runs,
which leads to a high probability of using multiple ciphertexts
for a plaintext, resulting in more time spent on database
maintenance. Therefore, the increase of (from 2 to 512)
in the presence of short runs causes a substantial (more
than tenfold) increase in both the encryption and database
maintenance duration.

Query Processing. In this part, we study the total time needed
to rewrite queries at the crypto module and execute the queries
at the server.4 The first experiment examines query processing
duration as a function of . For this evaluation, two queries
(0 and 1) of the adapted TPC-H benchmark queries and their
counterparts making use of aggregate functions (10 and 11)
were selected.

The intuition that query processing is slowed down when
increasing is confirmed in Figure 7. The processing time
increase naturally depends on the query: The increase for
queries 0 and 10 is lower than for queries 1 and 11 due to
the fact that the WHERE clause is applied to fewer columns.
A larger implies a higher ciphertext cardinality, which
leads to an increase in the number of BI operations. This in
turn affects the performance of query processing negatively. A
closer look the performance numbers reveals that for
query processing takes less than twice as long as for .
Assuming that a slow-down factor of 2 for query processing is
acceptable, an acceptable choice for given our data would
thus be .

The duration of all queries for is depicted
in Figure 8, presenting the breakdown of the duration into
different processing steps for each query. Additionally, this
figure shows the mean duration of query processing for
and without compression (baseline execution). We observe that
query 10 has the longest execution time for both SPP and
WPP data. The main contributors to this long duration are the
aggregate operations and the formatting operations required by
this query, which combines a large number of rows returned
and a GROUP BY clause. The execution of the SELECT clause
is the second most expensive operation, especially for queries
that return a large number of rows because reading from disk
takes time. Queries with aggregations perform worse than
their counterparts, since their performance is impeded by the
formatting of the data.

Note that the server returns larger groups for GROUP BY
operations if than for . This is due to the
fact that for , a plaintext has more than one ciphertext
and the server sees them as different values. Hence, some extra
refinement steps are necessary on the client side to consolidate
the results.

4The duration of the decryption process after the server has returned the
result has been analyzed earlier in this section.

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600

D
ur

at
io

n
[m

s]

K

query 0
query 1

query 10
query 11

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600

D
ur

at
io

n
[m

s]

K

query 0
query 1

query 10
query 11

Fig. 7: Duration of four queries as a function of for SPP (left) and WPP (right) data. Query 10 and 10 are the counterparts
with aggregation of query 0 and 1, respectively.

 0

 2000

 4000

 6000

 8000

0 1 2 3 4 5 6 7 8 9 10111213141516171819

D
ur

at
io

n
[m

s]

Query

Query rewriting
Where operations

Select operation
Order by operations
Group by operation

Aggregate operations
Baseline execution

 0

 2000

 4000

 6000

 8000

0 1 2 3 4 5 6 7 8 9 10111213141516171819

D
ur

at
io

n
[m

s]

Query

Query rewriting
Where operations

Select operation
Order by operations
Group by operation

Aggregate operations
Baseline execution

Fig. 8: Histogram of query processing duration for solar (left) and wind (right) data for each of the twenty queries. The
breakdown includes the duration of query rewriting and execution of WHERE, SELECT, ORDER BY, GROUP BY, and
aggregate operations. The graph also shows the duration of each query in the baseline execution (, not compressed).

For the first ten queries, setting allows the
system to process queries slightly faster than the baseline
execution because more data must be retrieved due to the
lack of compression. However, for the last ten queries, the
baseline execution performs better since it returns fewer groups
and needs less time for formatting than an execution with

. For 50% (35%) of the queries, the system with
compression and was faster than the baseline execution
for SPP (WPP) data. For the other queries, the measured
median slowdown was quite small at 2.24% (4.66%) for
SPP (WPP) data. The observed trends also hold for other
moderate values of .

VI. RELATED WORK

Encrypted data processing has been widely studied in
recent years [4], [5], [10], [17], [21]. Since fully homomor-
phic encryption [8], which enables the evaluation of arbitrary
Boolean circuits, is still impractical due to its large compu-
tational overhead, the focus has mainly been on executing
specific operations on encrypted data.

Order-preserving encryption (OPE) is a well-studied con-
cept [1], [5], [6], [9]. However, all OPE schemes were found
to leak more than just the order because they use weaker se-
curity guarantees. Recently, an interactive scheme [14], where
multiple communication rounds between client and server are
needed, was proposed that achieves ideal security, meaning
that no more than the order of the ciphertexts is revealed. Our
modifications to this encryption scheme are described in §III-B
and discussed in §IV.

Probabilistic encryption offers the best security but at
the same time renders searching quite difficult. In order to
improve searching, secure indexing mechanisms [16] have
been proposed. While the proposed secure index maintains a
high level of security, they are not suitable for our purposes
because the suggested use of probabilistic encryption is costly
and the order among ciphertexts and the number of repetitions
are revealed anyway in our approach.

Several complete database systems, using partial homomor-
phic encryption, have been proposed that achieve an overhead

small enough for practical applications [3], [15], [18], [19].
CryptDB [15] is a database system that enables the execu-
tion of queries over encrypted data for standard relational
databases achieves strong performance numbers for certain
benchmarks. In order to support different operations, CryptDB
uses multiple encryption schemes, each scheme enabling cer-
tain operations. These encryption schemes are applied to the
data in an onion approach, going from the less secure to
the most secure encryption scheme (as the outermost layer).
CryptDB adjusts the encryption layer based on the queries
processed. MONOMI [18], which builds on CryptDB, is a
system that supports more general (analytical) workloads over
encrypted data. It uses a split client/server query execution
approach where some parts of the query are executed at the
client to improves efficiency and enable more complex queries
and data processing. While CryptDB and MONOMI offer
“reasonable” security (depending on the application), they do
not offer server-side compression, an essential feature for time-
series based applications. Our approach focuses on disk space
utilization at the expense of security. Hence, instead of having
multiple encryption schemes, it uses a single scheme that
covers all required operations. Naveed et al. have described
inference attacks that can be mounted against CryptDB storing
medical data [11]. Thus, security for such systems also depends
on the data that it stores (and how the system is set up). This
observation is also true for our system. However, as mentioned
earlier, the needed auxiliary information may not be available
and the entropy of the data may be too high to launch such
attacks for industrial-type time-series data.

VII. CONCLUSION

Processing time-series data efficiently in a confidentiality-
preserving manner is a challenging problem, which is even
harder when taking the requirement to bound the space com-
plexity into account. In this paper we described an approach
based on partially homomorphic -deterministic encryption
and query rewriting on the client to build a system that exploits
standard methods for compression and query processing on the
server. We have shown this can lower the space requirements
substantially: Our experiments with real-world data from solar
and wind farm power plants reveal that the size of the database
can potentially be reduced by approximately 90-95% compared
to uncompressed and encrypted data. The total space require-
ment is merely a small factor larger than the absolute minimum
that is needed to store ciphertexts for all distinct data values.
Another positive result is that the processing time of roughly
one third to one half of all tested queries was reduced when
applying our compression techniques. The median change in
running time was close to zero, at a slowdown of merely 2-5%
for solar plant and wind farm data. Thus, tremendous space
savings for encrypted time-series databases are possible at a
minor additional cost in terms of data processing time.

REFERENCES

[1] D. Agrawal, A. El Abbadi, F. Emekci, and A. Metwally. Database
Management as a Service: Challenges and Opportunities. In Proc. 25th
IEEE International Conference on Data Engineering (ICDE), pages
1709–1716, 2009.

[2] J. H. An, Y. Dodis, and T. Rabin. On the Security of Joint Signature
and Encryption. In Proc. 21st International Conference on the Theory
and Applications of Cryptographic Techniques (EUROCRYPT), pages
83–107, 2002.

[3] S. Bajaj and R. Sion. TrustedDB: A Trusted Hardware Based Database
with Privacy and Data Confidentiality. In Proc. SIGMOD International
Conference on Management of Data, 2011.

[4] M. Bellare, A. Boldyreva, and A. O’Neil. Deterministic and Efficiently
Searchable Encryption. In Proc. 27th Annual Conference on Advances
in Cryptology–CRYPTO, pages 535–552, 2007.

[5] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-Preserving
Symmetric Encryption. In Proc. 28th Annual Conference on Advances
in Cryptology–EUROCRYPT, pages 224–241, 2009.

[6] A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving Encryp-
tion Revisited: Improved Security Analysis and Alternative Solutions.
In Proc. 31st Annual Conference on Advances in Cryptology, pages
578–595, 2011.

[7] F. Fusco, M. Vlachos, and X. Dimitropoulos. RasterZip: Compressing
Network Monitoring Data with Support for Partial Decompression.
In Proc. 12th ACM Conference on Internet Measurement Conference
(IMC), pages 51–64, 2012.

[8] C. Gentry, S. Halevi, and N. Smart. Fully Homomorphic Encryption
with Polylog Overhead. In Proc. 31st Annual Conference on Advances
in Cryptology–EUROCRYPT, pages 465–482, 2012.

[9] S. Lee, T.-J. Park, D. Lee, T. Nam, and S. Kim. Chaotic Order
Preserving Encryption for Efficient and Secure Queries on Databases.
IEICE Transactions on Information and Systems, E92.D(11), 2009.

[10] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Authenticated
Index Structures for Aggregation Queries in Outsourced Databases.
ACM Transactions on Information and System Security (TISSEC),
13(4):32:1–32:35, 2010.

[11] M. Naveed, S. Kamara, and C. V. Wright. Inference Attacks on
Property-Preserving Encrypted Databases. In Proc. 22nd ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages
644–655, 2015.

[12] V. Nikolaenko, U. Weinsberg, S. Ioannidis, M. Joye, D. Boneh, and
N. Taft. Privacy-preserving ridge regression on hundreds of millions
of records. In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 334–348. IEEE, 2013.

[13] P. Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In Proc. 18th Annual Conference on Advances
in Cryptology–EUROCRYPT, pages 223–238, 1999.

[14] R. A. Popa, F. H. Li, and N. Zeldovich. An Ideal-Security Protocol for
Order-Preserving Encoding. In Proc. IEEE Symposium on Security and
Privacy (S&P), pages 463–477, 2013.

[15] R. A. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB:
Protecting Confidentiality with Encrypted Query Processing. In Proc.
23rd Symposium on Operating Systems Principles (SOSP), 2011.

[16] E. Shmueli, R. Waisenberg, Y. Elovici, and E. Gudes. Designing Secure
Indexes for Encrypted Databases. In Proc. 19th Annual IFIP WG 11.3
Working Conference on Data and Applications Security and Privacy
(DBSec), pages 54–68, 2005.

[17] B. Thompson, S. Haber, W. G. Horne, T. Sander, and D. Yao. Privacy-
Preserving Computation and Verification of Aggregate Queries on
Outsourced Databases. In Proc. 9th Privacy Enhancing Technologies
Symposium (PETS), pages 185–201, 2009.

[18] S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich. Processing
Analytical Queries over Encrypted Data. In Proceedings of the VLDB
Endowment, volume 6, pages 289–300, 2013.

[19] W. K. Wong, B. Kao, D. W.-L. Cheung, R. Li, and S.-M. Yiu. Secure
Query Processing with Data Interoperability in a Cloud Database
Environment. In Proc. ACM SIGMOD International Conference on
Management of Data, pages 1395–1406, 2014.

[20] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing Bitmap Indices
With Efficient Compression. ACM Transactions on Database Systems
(TODS), 31(1):1–38, 2006.

[21] Y. Yang, D. Papadias, S. Papadopoulos, and P. Kalnis. Authenticated
Join Processing in Outsourced Databases. In Proc. ACM SIGMOD
International Conference on Management of Data, pages 5–18, 2009.

[22] J. Ziv and A. Lempel. Compression of Individual Sequences via
Variable-Rate Coding. IEEE Transactions on Information Theory,
24(5):530–536, 1978.

