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ABSTRACT
We present a new methodology for solving linear Support
Vector Machines (SVMs) that capitalizes on multiple 1D
projections. We show that the approach approximates the
optimal solution with high accuracy and comes with ana-
lytical guarantees. Our solution adapts on methodologies
from random projections, exponential search, and coordi-
nate descent. In our experimental evaluation, we compare
our approach with the popular liblinear SVM library. We
demonstrate a significant speedup on various benchmarks.
At the same time, the new methodology provides a compa-
rable or better approximation factor of the optimal solution
and exhibits smooth convergence properties. Our results are
accompanied by bounds on the time complexity and accu-
racy.

Categories and Subject Descriptors
I.5.3 [Classification]: Algorithms

Keywords
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1. INTRODUCTION
Classification is a key task in data analysis, and support

vector machines (SVMs) belong to the state-of-art tech-
niques for data classification. SVMs can be broadly catego-
rized into linear and nonlinear (e.g., kernel-based). Linear
SVMs fit linear boundaries in the original attribute space,
whereas nonlinear SVMs first transform the data into a new,
higher-dimensional space. Because linear boundaries in the
transformed space correspond to nonlinear ones in the orig-
inal space, nonlinear classification is made possible. Sev-
eral research efforts have attested that nonlinear SVMs offer
better classification accuracy than the linear ones [34, 17].
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However, this comes at the expense of significantly higher
computation cost [25], which renders them prohibitively ex-
pensive for large datasets.

Nonlinear SVMs do not offer additional benefits for
datasets having more features than observations, where
classes are linearly separable. This scenario is very frequent
in genomic studies, where one typically collects only few data
samples that contain measurements for thousands of genes.

In general, linear SVMs are better suited:
- when the data have more attributes than observations,

then we do not really have enough data to fit a complex
function, and a simple linear approach is most reasonable;

- for Big Data analytics and for exploratory/interactive
data analysis because of their superior performance, i.e.
their ability to quickly extract rudimentary data statistics;
and

- in applications that require either a real-time response
rate or conservation of energy resources (e.g., sensors). In
such cases, obtaining a rough solution quickly may be prefer-
able over getting an optimal solution slowly.

In this work, we present approaches for speeding up linear
SVMs further while maintaining accuracy. The main idea is
based on the fact that many problems, while difficult in high-
dimensional spaces, may indeed be solved optimally and in
a simple manner in one dimension. Consider for example,
the general K-Means problem; even though it is NP-hard in
high dimensions, 2-Means clustering can be solved exactly
and efficiently for a single dimension [5].

Support vector machines seek to maximize the margin be-
tween the hyperplane that separates two classes. This prob-
lem can be solved efficiently in 1D [30]. Therefore by com-
bining multiple 1D solutions, we can progressively bound the
error of the SVM solution. In general, we make the following
contributions:

1. We present a new and simple-to-implement methodol-
ogy for solving linear SVMs. The technique capitalizes
on multiple 1D projections and SVM solutions to es-
timate the class-separating hyperplane in the original
data dimensionality. First, we examine a naive random
projection approach. This serves as an initial testbed
for establishing a pessimistic bound on the number of
1D projections that are required, and the number of 1D
separating hyperplane problems that need to be solved,
to approximate the original hyperplane solution with
arbitrary accuracy. The second approach is of general
practical interest. It uses a local search mechanism
to probe rotations around the currently estimated hy-
perplane to improve the current solution. This second



algorithm in addition exploits notions from coordinate
descent [6] and exponential search [3].

2. By working on 1D, we can reduce the computational
complexity because distances between points are faster
to compute. More importantly we offer analytical
guarantees on the quality of the solution provided;
a solution that is computed on 1D projections but
estimates the original, high-dimensional, linear SVM
problem.

3. We compare the runtime and quality of these new algo-
rithms with the popular liblinear SVM library. For
an extended number of benchmarks, we show that the
new methods achieve higher accuracy and lower run-
time than the state-of-art algorithms for solving linear
SVMs.

In general, our methodology offers new directions for solv-
ing linear SVM problems and owing to its low computational
demands, it is particularly applicable on very large datasets.

The remainder of the paper is structured as follows: First
we give the formulation of linear SVMs in high dimensions
and review related work. In Section 3, we show how the
linear SVM problem can be solved efficiently in the primal
space on a single dimension and offer a complexity analysis.
In Section 4, we combine multiple 1D SVMs and provide an
error bound on the number of 1D projections that are re-
quired. In Section 5, we present a more intelligent approach
based on local search. Finally, in the experimental section,
we provide scalability and accuracy comparisons against var-
ious algorithms from the liblinear SVM library.

2. BACKGROUND
We describe the general formulation of linear SVMs and

ways to solve the optimization problem. Assume that the
training data consist of N points X = {xi|xi ∈ Rd, i ∈
[1..N ]}, each point xi having a binary class label yi ∈
{−1, 1}. The goal is to compute a hyperplane Hopt :=
(wopt, bopt) that separates the two classes with maximum
margin as shown in Figure 1.
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Figure 1: A Linear Support Vector Machine classi-
fier for two classes.

The class of a point a for a hyperplane H := (w, b) is
given by the sign of the term w · a+ b. As point sets are in
general not perfectly separable, each point xi is accompanied
by a slack variable ζi that accommodates misclassification

of points. Formally speaking, we want to find (w, b) with
w ∈ Rd and b ∈ R such that we

minimize ||w||2/2 + c ·
∑

i∈[1,N ]

ζpi (1)

subject to

yi(xiw + b) ≥ 1− ζi, ∀i ∈ [1, N ] (2)

ζi ≥ 0, ∀i ∈ [1, N ]. (3)

Parameter c determines the trade-off between misclassify-
ing a point xi (which is the case for ζi > 0) and maximiz-
ing the margin. Setting p = 1 we get the L1-SVM and for
p = 2 the L2-SVM. Note that L1-SVM is a convex optimiza-
tion problem, and L2-SVM is a strictly convex optimization
problem.

Solving high-dimensional SVMs: To solve the above
optimization problem efficiently, often the dual formulation
is considered. Prevalent methods for solving SVMs include
coordinate descent techniques [6, 33, 12], cutting plane tech-
niques [14], the finite Newton method [16], alternations be-
tween stochastic gradient descent steps and projection steps
[29], and the trust region Newton method [21]. Iterative,
anytime SVM approaches using Cholesky decompositions
are presented in [9]. A survey on large-scale linear classi-
fication focusing on L1/L2 regularized L1/L2-loss SVM and
logistic regression can be found in [35].

A key design choice is whether to optimize the primal or
the dual formulation. Although there are many algorithms
based on the dual SVM formulation, there are also argu-
ments in favor of using the primal one [7].

Using Random Projections: In our approach we use
multiple 1D random projections. Random projections are
often associated with the Johnson–Lindenstrauss Lemma
[15]: points in a high-dimensional Euclidean space can be
projected into a low-dimensional Euclidean space with tight
bounds on distance preservation. A random projection L
is a random vector originating from the origin and going to
a randomly chosen point in the d-dimensional unit sphere.
Random projections have been already used in the field of
SVMs. Osadchy et al. [23] assume that the negative class is
very large and approximate it with a Gaussian distribution.
They separate the (1D) projection of this distribution from
the positive samples using a ”hybrid” prior. In the Krish-
nan et al. [18] show that by using random projections with
k = O(1/ε2 logN) dimensions one can approximate the op-
timal SVM solution within a factor of (1 + ε). Boutsidis et
al. [24] demonstrate that when using random projections
for linear SVMs, the margin and minimum enclosing ball in
the feature space are preserved within a small relative error.
Finally, [26] uses random features to approximate nonlin-
ear shift-invariant kernel functions with sinusoids randomly
chosen from the Fourier transform of the kernel function.

Note also that for the above techniques, the recommended
logarithmic (to the number of objects) projected dimension-
ality may prove impractically high for Big Data applications.
In contrast to the above, we only perform projections on 1D,
where all operations (sorting, searching and distance com-
putations) are faster and simpler.

To simplify notation and exposition of ideas, we focus on
binary SVMs in the remainder of the paper, which can also
be used as the basis for constructing multi-class SVMs [8,
28, 32].



3. SOLVING THE 1D LINEAR SVM
We first describe how linear SVMs can be solved efficiently

on one dimension. The process basically resorts to a sorting
of points. We use the primal formulation of the optimization
problem as described in Section 2. Using a Lagrange multi-
plier αi for each constraint in (2) and βi for each constraint
in (3) results in the following Lagrange primal function for
minimization

lp = ||w2||/2+c
∑
i

ζi−
∑
i

αi(yi(xi ·w+b)−1+ζi)−
∑
i

βiζi.

(4)
The Karush–Kuhn–Tucker (KKT) conditions [4] provide the
necessary conditions to minimize the Lagrange function.
They also allow us to formally prove several interesting sim-
plifications for the 1D case [30]1. The two most important
observations are:

i Let n+ be the number of points of class 1 that are
wrongly classified, i.e., with ζi > 0 (and analogously n−

the number of misclassified points of class -1). We have
n+ = n−, i.e., the number of wrongly classified points is
the same for each class.

ii Let α+ be the sum of all αi for the positive support
vectors (and α− for the negative support vectors). It
holds α+ = α−.

Hopt
errors class 1 errors class �1

Ordering class 1

Ordering class 1
123456

1 2 3 4 5 6

etc..

Figure 2: One-dimensional SVM with optimal hy-
perplane Hopt. To compute Hopt, it suffices to con-
sider all (up to) N/2 pairs of possible support vec-
tors. Pair i consists of point i from class 1 and point
i from class -1.

Therefore, it suffices for 1D SVMs to perform a linear scan
through all sorted points, see Figure 2 for an example. One
can commence from the two most distant points from each
class, i.e., one point from class 1 and one point from class
-1, and assume that they are the two support vectors. For
these two points, the weight, the bias and the Lagrangian lp
are computed as follows:

The 1D weight w1d at iteration i is the midpoint of the
current support vectors. To compute the bias b, one can use
a constraint for the current support vectors, i.e.,

1 = w1d · PLSi − b

where PLSi is a support vector. To compute the sum of the
slack variables ζ :=

∑
i ζi, we use the equation

ζi := 1− yi(w1d · L · Pi − b)
1In [30] Observation 4 states that “All positive support vec-
tors have the same coordinate.”, which does not hold in gen-
eral for non-linearly separable data. In fact, the authors
mean that all points with yi · (xi ·w+ b) = 1 have the same
coordinate.

and simplify it using the above observations (i-ii), which
leads to

ζ := 2 · (n− i) + w1d · (S1(i)− S−1(i))

where n is the number of points in class 1, and S1(i) and
S−1(i) are sums of coordinates of points from class 1 and
-1, respectively, as defined in line 5 of Algorithm SVM1D.
Once the loss function (Lagrangian) is computed, the pre-
viously considered points are removed. From the remaining
ones, we choose again the two most distant points from each
class. The procedure is repeated for all remaining pairs. The
resulting solution is given by the pair of points resulting in
the minimum loss lp (4).

The pseudocode of the above procedure is given in Algo-
rithm SVM1D.

Algorithm 1 SVM1D(input: points P, labels LA, projec-
tion line L; output: minimum weight w1d

min, bias bmin and
loss lmin)

1: PL := {L · P |P ∈ P} {Project points onto line L}
2: Sort projected points PL
3: PLS1 := (L ·P0, L ·P1, ..., L ·P|P||L ·Pi ≤ L ·Pi+1∧LA(Pi) =

1) {Ascending projected points of class 1}
4: PLS−1 := (L·P0, L·P1, ..., L·P|P||L·Pi ≥ L·Pi+1∧LA(Pi) =

−1) {Descending projected points of class -1}
5: Sc∈{1,−1}(i) :=

∑
k>i,L·Pk∈PLSc

L · Pk

6: lmin :=∞
7: for i = 1..min(|PLS−1|, |PLS1|) do
8: w1d := 2/(PLS1(i)− PLS−1(i)) {weight in 1D}
9: if w1d < 0 then

10: b := 1− PLS1(i) · w1d

11: ζ := 2 · (n− i) + w1d · (S1(i)− S−1(i))
12: lp := w1d·w1d/2+c·ζ {Loss with regularization constant

c}
13: if lp < lmin then
14: lmin := lp
15: bmin := b
16: w1d

min := w1d

17: end if
18: end if
19: end for

20: wmin := w1d
min ·L {high-dimensional scaled normal vector of

hyperplane}

Now, we analyze the complexity of the SVM1D algorithm.
We prove that the algorithm returns the optimal result for
a given direction. If the direction is far from the optimal
direction, the solution might also be far from the overall
optimal solution because the direction given is not modified
by the algorithm.

Theorem 3.1. Algorithm SVM1D executes in time
O(N logN+N ·s) for a projection L with s nonzero entries.
It computes an optimal hyperplane (w1d, b), with w1d, b ∈ R
for the given projection L.

Proof. Projecting all N points in d dimensions onto
random line L with s nonzero entries requires N · s time.
The sorting of the projected points requires O(N logN).
Iterating through all N points (lines 7–19 in Algorithm
SVM1D) requires time O(N). This yields an overall time
complexity of O(N logN + N · s). To show correctness, let
wopt(L) := w1d

opt · L and bopt be an optimal separating hy-
perplane for a given projection L minimizing equation (4),
where w1d

opt is the optimal scaling factor. Therefore a point



xi is classified as either class 1 or class -1 using

sign(woptxi + bopt) = sign((w1d
opt · L)xi + bopt)

= sign(w1d
opt · (L · xi) + bopt).

Therefore to solve the problem optimally for a given direc-
tion L in high-dimensional space, we can derive a classifier
for the projected points L · xi in one dimension.

Using Algorithm SVM1D, the linear support vectors can
be discovered optimally on 1D. The interested reader can
find the proof in [30].

Now a question that naturally arises is: Given multiple
1D SVM solutions, can we somehow combine them to ap-
proximate the original, high-dimensional hyperplane? We
address this question in the next sections.

4. APPROACH 1: NAIVE RANDOM PRO-
JECTIONS

Here we examine how to combine multiple solutions of 1D
random projections for solving the high-dimensional SVM
problem. We perform an initial analysis that reveals a (pes-
simistic) upper bound on the number of random projections
required for approximating the linear SVM with arbitrarily
high accuracy. Later we improve on this solution by per-
forming a more intelligent search process.

Assume that we pick a random projection line of unit
length, which serves as the normal vector of the hyperplane.
We project all points onto the random normal vector. In the
preceding section we showed how to solve the linear SVM
problem optimally in one dimension. Thus, the problem
reduces to finding two scalars for the hyperplane chosen: the
optimal bias bopt and the optimal 1D weight w1d

opt computed
by algorithm SVM1D (Section 3). The weight is used to
scale the random line chosen.

One can repeat the process of choosing a hyperplane, pro-
jecting points and solving the 1D SVM problem such that
in each iteration the hyperplane is chosen independently of
any previously selected random planes. In this way, the
data are projected multiple times, and also the 1D problem
is solved multiple times. Random projections are chosen in-
dependently, and the error (i.e., the loss function) for each
trial is computed. The final result is the projection with the
smallest loss. The process is summarized in Figure 3.

Each of the above iterations is very efficient. Choosing a
random hyperplane and projecting all points onto the hyper-
plane takes (N+1) ·d time. The simplest random projection
is given by choosing each entry of the vector independently
from the standard normal distribution N (0, 1). There is no
need for normalization, as we only consider the direction of
the vector and not its magnitude. Computing the support
vectors in one dimension is also computationally inexpen-
sive, requiring O(N logN), as was shown in Theorem 3.1.

Error Analysis: Here we provide probabilistic bounds on
the trials required so that a chosen vector v is within an angle
φ0 of the optimal vector wopt (see Figure 4). The actual
prediction error and its sensitivity depend on the margin of
the classifier and therefore on the distribution of the data.

Denote φ(a, b) as the angle between vectors a and b.

Theorem 4.1. For any fixed vector a after at most 2c0 ·
e2
√

d+2 logN choices of random vectors at least one vector v

L
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2) Compute optimal separating hyperplane HL =(w1d,b) for 

    projected points on line L

1) Project points onto randomly chosen line L=w/||w||

3) Compute error for plane (w1d*L,b)

4) Repeat from 1 until error below threshold or maximal 

     number of iterations are reached 

Figure 3: Illustration of algorithm ProjectSVM for 8
points taken from two classes

Algorithm 2 ProjectSVM(input: points X, class labels Y ,
maximal iterations maxIter; output: weights wmin, bias
bmin)

1: lmin :=∞
2: for i = 1..maxIter do
3: Choose a random projection line L ∈ Rd with each coor-

dinate chosen from N (0, 1)
4: (w1d, b, l) := SVM1d(X,Y, L)
5: if l < lmin then
6: lmin := l
7: bmin := b
8: wmin := w1d · L/||L|| {scaled normal vector of hyper-

plane}
9: end if

10: end for

is such that φ(a, v) < φ0 with probability 1− 1/Nc0/2 for an
arbitrary constant c0.

Proof. The proof can be found in the appendix.

The theorem basically states that the algorithm will find
a solution that is arbitrarily close to the desired high-
dimensional hyperplane, but the exploration space can be
vast: we have an exponential dependence on the number of
dimensions. The following section revisits the search pro-
cess, and shows that the search space can be substantially
pruned by accommodating an intelligent selection of the 1D
hyperplanes.

5. APPROACH 2: LOCAL SEARCH
In this section, we present our main algorithm LocalSVM,

which improves on the preceding naive approach by selecting
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Figure 4: The angle φ between the optimal hyper-
plane for the point set and the hyperplane guessed
by algorithm ProjectSVM.

each projection line via intelligent local search. This ensures
fast and smooth convergence.

The LocalSVM algorithm follows a similar outline as be-
fore: points are projected onto a line, and the problem is
solved optimally on that line. Now, however, we implement
a local search that sequentially modifies each coordinate on
the currently best projection known. This can be regarded
as an alternative way of doing coordinate descent. Stan-
dard techniques for coordinate descent solve a target prob-
lem optimally for a single coordinate while keeping all the
remaining coordinates fixed. Our approach, however, differs
in the following way: We also modify the value of a single
coordinate of the currently best hyperplane known to select
a new direction. But then we consider arbitrary magnitudes
in the new direction to determine its optimal solution, which
modifies all coordinates of the current solution vector rather
than a single one. This is illustrated by the example in Fig-
ure 5. Note also that while our approach considers potential
future directions with arbitrary lengths and small angle to
the previous one, standard coordinate descent approaches
generally consider rather shorter solutions with larger angle
to the previous one. As we show in the experimental section,
our approach leads to smoother convergence.

The main motivation for considering each coordinate sep-
arately is computational efficiency. Recall that the complex-
ity of our naive algorithm ProjectSVM is heavily influenced
by the time spent on projecting points. Without any as-
sumptions a single projection requires O(N · d) time. How-
ever, we can exploit the linearity of the scalar product to
reduce the time complexity. For a projection w composed
of two other projections, i.e., w := wmin +w′ and any point
xk, we have

w · xk = (wmin + w′) · xk = wmin · xk + w′ · xk.

Because wmin ·xk has been precomputed (in a prior iteration
or before the first iteration), the time to compute w′ · xk is
proportional to the nonzero entries in w′. Thus, choosing a
sparse vector w′ has a positive impact on the performance.
For a projection onto a singular coordinate, there is only one
nonzero entry in w′.

Algorithm LocalSVM: Here we provide more details on the
LocalSVM method. Let w denote the currently best direc-

w0

w1

w2

w0

w1 w2

our approach

for directions w2 (w1)

P2

P1

traditional coordinate descent

P0P0

P1
P2

Figure 5: On the left, we show three iterations of
traditional coordinate descent techniques for an el-
liptic function. The right panel shows two solution
vectors of our local search approach. For each direc-
tion w0, w1 and w2, we compute the optimal solution
in 1D, which yields points P0, P1 and P2.

tion. Each iteration i consists of one or two passes performed
for each coordinate. In the first pass, t is added to the i-th
coordinate of w to yield w′. Then the loss for the projected
values (xi ·w′, i ∈ [1, N ]) is evaluated by solving the SVM1d
problem. If it significantly decreases the loss, the new direc-
tion is scaled with the weights obtained from SVM1d (w1d).
If not, a second pass is performed where the i-th coordinate
is evaluated in the same way, now by subtracting instead of
adding t from the i-th coordinate of w. It is not essential
that t is added (or subtracted). A coordinate might as well
be multiplied or divided by a value. However, it is important
that the value is adjusted in the right manner, i.e. using an
exponential scheme. The set of d iterations through all di-
mensions denotes one phase. Following that, the algorithm
commences the next phase and considers one coordinate af-
ter the other, i.e., in the i-th iteration of the j-th phase, we
modify the i-th coordinate. During a phase, the value t that
is added to (or subtracted from) each coordinate of the solu-
tion vector w remains fixed. After every phase, t is reduced
or increased by a constant factor ct using an exponential-like
search as follows: The value t is multiplied by either a factor
1/ct or a factor ct. When in the prior phase t was multi-
plied by v ∈ {1/ct, ct} and there was a “sufficient” decrease
of the loss in the current phase, then t is again multiplied
by the same value v. If the change was not sufficient then
we multiply by 1/v. Note that if the loss is not sufficiently
decreased in two subsequent phases the threshold thres in
the Algorithm LocalSVM is decreased substantially to avoid
that t repeatedly alternates between two values.

Convergence: Now, we formulate the convergence proper-
ties of the LocalSVM algorithm. We show that our method
converges for any strictly convex function, such as the l2 loss
function [1].

Theorem 5.1. For strictly convex functions f , the algo-
rithm LocalSVM converges towards the optimal solution.

Proof. For f a strictly convex function, for any non-
optimal point w there must be a t∗ > 0 and a coordinate j
such that

f(w + t∗ej) < f(x) or f(w − t∗ej) < f(x)

where ej is the unit vector with all coordinates set to zero
and coordinate j set to 1. Let wi be the best solution
found up to phase i. Thus, if there is no improvement for



Algorithm 3 LocalSVM(input: points X, class labels Y ,
nIter; output: weights wmin, bias bmin and loss lmin)

1: t := 1
2: ct := 2 {value to increase/decrease t}
3: curr := ct {factor by which t is changed, either ct or 1/ct}
4: thres := 1.1 {Initial threshold for change in loss function}
5: wmin := (0, 0, ..., 0) {Initial vector for hyperplane w}
6: llast = 0 {Value of loss in the last phase}
7: lmin =∞ {Initial value of the minimum loss}
8: NoLossDecrease := false
9: for i = 0..nIter do

10: coord := i mod d+ 1 {Coordinate that is modified}
11: {Check if a new phase begins}
12: if coord == 1 and i > 0 then
13: if llast < lmin · thres then
14: if NoLossDecrease == true then
15: thres := 1 + (thres− 1)/c4t
16: curr := 1/ct
17: else
18: curr := 1/curr
19: end if
20: NoLossDecrease := true
21: else
22: NoLossDecrease := false
23: end if
24: t := t · curr
25: llast := lmin

26: end if
27: isMinDir := false
28: for each sign ∈ {−1,+1} and if isMinDir = false

do
29: w′ := d-dimensional vector with zeros except coordth

coordinate being sign · t
30: w := wmin + w′

31: wX := (x1 · w, x2 · w, ..., xN · w)
32: (w1d, b, l) := SVM1d(X′, Y, w)
33: if l ≤ lmin then
34: isMinDir := true
35: lmin := l {New best solution}
36: bmin := b
37: wmin := w · w1d

38: end if
39: end for

40: end for

phase i then wi = wi−1. Define an unsuccessful phase as
a phase in which the loss has not decreased “sufficiently”:
f(wi) · thres > f(wi−1). Let u be the number of consecu-
tive unsuccessful phases starting at phase i. Let scalei (de-
noted as t in the algorithm) and thresi be the values used in
phase i of the algorithm LocalSVM. For u = 2, the thresh-
old (minus 1) is decreased by c4t with ct > 1: thresi+2 :=
1 + (thresi − 1)/c4t . Furthermore, the current update value
curr for scalei will be set to 1/ct, i.e., scale will be decreased
by a factor of 1/ct. To get an upper bound for scalei+2,
assume that scale was increased by ct in phase i and de-
creased by ct in phase i+ 1, thus 0 < scalei+2 ≤ scalei/c

2
t .

For u = 4, we have that thres and scale are both decreased:
0 < scalei+4 ≤ scalei/c4t and thresi+4 := 1+(thresi−1)/c8t .
This pattern repeats for consecutive unsuccessful phases,
i.e., for u > 4 we get 0 < scalei+u ≤ scalei/c

u
t and

thresi+u := 1 + (thresi − 1)/c
4bu/2c
t . Thus, at some point,

scale must be smaller than t∗ which yields the function f
decreased. As thres − 1 decreases much faster than scale
(by a factor c4t versus c2t for two consecutive unsuccessful
phases), we have that thres reaches 1 much faster than
scale reaches 0. Eventually, for some phase j, the (rela-

optimal

direction

optimal hyperplane

initial 

direction wmin

optimal hyperplane H for wmin

Iteration 1

Iteration 2 Iteration 3

direction w

optimal for w, worse than H 

=> wmin still best direction

Iteration 5Iteration 4

Iteration 6 Iteration 7

Iteration 8 Iteration 9

optimal for w, better than H 

=> w is new best direction

direction w

Figure 6: Illustration of Algorithm LocalSVM. After
computing the optimal hyperplane for the initial di-
rection v, one coordinate of the currently best solu-
tion known is modified in each iteration. At Itera-
tions 2 and 3, the x-coordinate is changed by a fixed
magnitude t. In Iterations 4 and 5, the y coordinate
is changed by the same t. At Iteration 6, the process
repeats for a smaller t := t/ct = t/2. At Iteration 8,
the classifier for v′ becomes the new best classifier.
At Iteration 9, the x-coordinate is changed by t.



tive) change of function f for some coordinate is larger than
thres: f(wi) · thres < f(wi−1). This phase j is successful.
Then for some k, scalej+k ≥ scalej and all r ∈ [j, j + k],
there exists a coordinate i such that
f(wr + scalerei) · thres < f(wr−1)
or f(wr − scalerei) · thres < f(wr−1).
In other words, in each phase r ∈ [j, j + k], the solution wr

gets improved. Eventually, thres gets arbitrarily close to 1,
and the current best solution wr gets arbitrarily close to the
optimal solution wopt.

Above, we showed the convergence for (strictly) convex
functions [22, 12, 33, 6]. Note, however, that it is hard and
still largely an open problem to prove the rate of convergence
for cyclic coordinate search in general [22].

As we will show through extensive evaluations in the fol-
lowing section, the runtime of LocalSVM is superior to that of
the naive approach ProjectSVM. This makes it an attractive
method for solving large-scale linear SVM problems.

6. EMPIRICAL EVALUATION
Here we evaluate the runtime and accuracy of the pro-

posed methods. We compare their performance with that
of two algorithms for linear SVMs implemented in the lib-

linear framework [10]:

• Algorithm L2RL1LOSSSVCDUAL by Hsieh et al. [12].
This method uses a dual coordinate descent approach.
For each coordinate, it performs several iterations un-
til the optimal solution has been found. We com-
pare with this algorithm, because in [12] the authors
show that their approach outperforms other state-of-
the-art techniques such as Pegasos [29] (one of the de-
facto stochastic gradient methods for SVMs), as well
as TRON [21] and SVMperf [14].

• Algorithm L2RL1LOSSSVRDUAL [34], which considers
support vector regression, in which only a single slack
variable is optimized for all constraints. It uses New-
ton steps.

Our algorithms are the naive ProjectSVM and the more
intelligent LocalSVM. All code is implemented in Java and
experiments have been conducted on a 2.6 GHz Intel CPU
with 16 GB RAM 2.

Datasets: We consider a variety of datasets that have been
used for evaluating linear binary classifiers from the UCI
machine learning repository3 and datasets that come with
the liblinear framework [10].4 We purposefully focus on
dense data, that is, data with (mainly) nonzero values, so
as not to give an unfair advantage to our approach; because
sparse high-dimensional data can be compressed efficiently
using random projections with very little loss of accuracy [2,
20]. A summary of the datasets used in our experiments is
given in Table 1.

Benchmark set-up: For each algorithm, we run each
benchmark for (1, 2, 4, ..., 218) iterations. For our algorithms,
we used the parameters stated in the pseudocodes. For the
solvers from liblinear, we retained the default settings.
2Java is a registered trademark of Oracle and/or its affili-
ates. Intel is a registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries.
3http://archive.ics.uci.edu/ml/datasets.html
4www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Name Type Objects Dim
Record Linkage3 Person records 5,734,488 12
SkinNonSkin3 Images 245,057 4
Epsilon 4 PASCAL ’08 challenge 100,000 2000
Codrna [31] Gene data 59,535 8
MiniBooNE [27] Astronomy 50,000 50
Magic043 Astronomy 19,020 10
Musk3 Astronomy 6,598 168
Svmguide1 [13] Artificial 3,089 4
Madelon [11] NIPS ’03 challenge 2,000 500
Gisette [11] Letters 6,000 5,000
Svmguide3 [13] Artificial 1,243 22
Splice4 DNA 1,000 60
Diabetes4 Medical 768 8
Coloncancer4 Medical 62 2,000

Table 1: Datasets used in the experiments.
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Figure 7: Scalability experiment for increasing num-
ber of data objects.
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Figure 8: Scalability experiment for increasing data
dimensionality.

Scalability: We examine scalability both for increasing
number of objects and for increasing data dimensionality
using a fixed number of iterations.

Figure 7 illustrates the first experiment, in which we
evaluate runtime against increasing object cardinality (for
fixed dimensionality). For this experiment, we used the
‘Record Linkage Comparison Patterns’ dataset3, which con-
tains more than 5 million people records. We observe that
the runtime of our two methods is not substantially differ-
ent from that of the competing approaches. Time complex-
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Figure 9: Time versus accuracy graphs. Notice the smooth convergence of the LocalSVM approach proposed.

ity per object is higher for LocalSVM than for ProjectSVM

because of the point sorting involved in the former. Note
that for this experiment we do not report the classification
accuracy, which may have been different for each approach.
We examine this trade-off between speed and accuracy in
the following section. The goal of this first experiment was
merely to show that the techniques presented exhibit a run-
time that is on par with existing approaches.

In the second experiment, we fix the number of objects
and test the runtime for increasing data dimensionality. For
this experiment, we used the Gisette dataset because it is the
one with the highest dimensionality. Figure 8 summarizes
the results. We note the excellent performance of our ap-
proaches, and in particular of the LocalSVM approach, whose
runtime remains at the same level when increasing the num-
ber of dimensions. The time complexity of algorithm Pro-

jectSVM grows linearly with the number of points and di-
mensions, as every additional dimension must be taken into
account in every projection (iteration).

In summary, because our techniques always operate on the
projected 1D space, their performance is not substantially
affected by the data dimensionality. Therefore, we believe
that the algorithms presented constitute good candidates
for disciplines faced with high-dimensional data (medicine,
multimedia, etc).

Accuracy versus time: The motivation of our work is to
provide faster (approximate) solutions to linear SVMs while
not compromising the accuracy. Figure 9 shows the trade-

off between accuracy and time for four exemplary datasets,
and for up to 1024 iterations per run for each method. For
all benchmarks, our LocalSVM algorithm outperforms both
solvers of the liblinear framework in the accuracy range
above 65− 70%.

What is also noteworthy is that LocalSVM exhibits very
smooth convergence properties. This is clearly depicted in
all four graphs of Figure 9. In contrast, the general accu-
racy behavior of the liblinear solvers exhibits an oscillating
pattern. We define the smoothness θ as follows: For each
benchmark, we run each algorithm for a sequence of itera-
tions, i.e., 2, 4, 8, etc. This yields a sequence of accuracies
a := (a0, a1, ..., am). The smoothness is given by

θ :=

∑m−1
i=0 |ai+1 − ai|

max(a)−min(a)
,

where max(a)−min(a) is the difference between minimum
and maximum accuracy. Table 2 lists the smoothness θ
across all datasets. In the table, we present normalized θ
values, where values closer to 1 (one) are better and higher
numbers indicate worse results.

Finally, we run an experiment in which we let each tech-
nique run until it reaches up to 1% of the optimal accuracy
or until a maximum runtime of 1 min is reached. This is
similar to the experiment conducted in [12]. In Table 2,
we report normalized accuracy results, where 100 indicates
that the method achieved optimal accuracy. Note that for
the majority of datasets, LocalSVM achieves a better accu-
racy than the other techniques.



Smoothness Maximal Accuracy[%] tmax.Accuracy[ms]
Name LocalSVM SVCDUAL SVRDUAL LocalSVM SVCDUAL SVRDUAL LocalSVM SVCDUAL SVRDUAL
MiniBooNEPID 1.00 1.45 1.20 84 87 89 4296.1 1604.1 23545.9
Musk 1.00 1.30 1.13 96 100 96 7340.4 25822.8 9317.9
RecordLinkage 1.00 1.00 1.00 100 100 100 2292.1 973.1 1051.0
SkinNonSkin 1.00 2.09 1.57 84 82 82 311.8 184.4 282.7
codrna 1.00 2.20 1.43 94 89 90 2919.0 5007.2 4290.0
coloncancer 1.35 1.00 1.06 100 100 100 1.7 7.5 6.3
diabetes 1.00 1.45 1.47 77 67 67 1.8 6535.1 13311.6
gisette 1.50 1.07 1.00 100 100 100 3161.5 1211.0 741.7
madelon 1.00 1.17 1.13 75 62 71 1205.8 12806.0 768.6
magic04 1.00 1.36 1.65 79 76 74 263.8 38.9 33.5
splice 1.00 1.09 2.34 85 84 82 41.8 2.6 308.2
svmguide1 1.00 2.32 2.07 95 84 83 1.7 380.0 3.8
svmguide3 1.06 1.01 1.00 82 79 78 46.8 0.5 0.5

Table 2: Benchmark results for normalized smoothness of convergence (1 is better), maximal accuracy (100
is better) and time until the accuracy is within 1% of the maximal accuracy

7. CONCLUSIONS
Previous work on random projections examined the theo-

retical dimensionality on which to project high-dimensional
data so that the SVM problem can be solved faster and with
provable guarantees [24, 18]. In practice, the recommended
logarithmic (to the number of points) projected dimension-
ality may prove impractically high for Big Data applications.
In this work, we have shown that performing multiple one-
dimensional projections provides fast and provably good re-
sults for linear SVMs. Further contributions of this work
include the following:

1. Analytical bounds on the approximation quality of our
algorithms and a comprehensive complexity analysis of
the methods presented.

2. Extensive empirical comparison with algorithms from
the liblinear framework. Our results suggest that
the LocalSVM algorithm presented exhibits smooth
convergence properties and leads to important com-
putational savings.

Finally, our method has two direct and exciting implica-
tions: a) Distributed SVM execution, where each execution
site holds a different 1D projection, and b) Inherent support
for data obfuscation and data privacy. Because each site
only has access to its individual 1D projection, it becomes
very challenging to make inferences about the original high-
dimensional data.
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Appendix
Proof of Theorem 4.1:

Let a := (a0, ..., ad−1) with ||a|| = 1 and let v :=
(v0, v1, ..., vd−1) be the vector created by choosing each co-
ordinate vi independently from N (0, 1). Then

E[a · v] = E[
∑
i

ai · vi] =
∑
i

aiE[vi] = 0

and

V ar[a · v] = V ar[
∑
i

ai · vi] =
∑
i

a2iV ar[vi] =
∑
i

a2i = 1

(||a|| = 1 so
∑

i a
2
i = 1). From this, it follows a ·v ∼ N (0, 1).

Consider the Chi-square distribution with k = d degrees
of freedom: u :=

∑
i≥0 v

2
i . Using bounds from [19] (see

equation (4.3)) it holds

P (u− d ≥ 2
√
dt+ 2t) ≤ e−t

for all t > 0. In particular for t = 1, we get

P (u− d ≥ 2
√
d+ 2) ≤ 1/e,

i.e.,

P (u < 2
√
d+ 2) > 1− 1/e > 1/2.

Therefore,

||v|| =
√∑

i

v2i <

√
2
√
d+ 2

with probability larger than 1/2.
For any variable x drawing from N (0, 1) and z > 0:

P (x > z) =

∫ ∞
z

1/
√

2πe−t2/2dt

≥ 1/
√

2π · e−z2/2 · (1/z + 1/z3) ≥ e−z2 .

As a · v ∼ N (0, 1), it follows a · v > z with probability at

least e−z2 .
The probability of both a · v > z and ||v|| <

√
2
√
d+ 2

is therefore at least 1/2 · e−z2 . Then it holds that

P
(

a·v
||a||·||v|| > z/

√
2
√
d+ 2

)
> 1/2 · e−z2 . Assume that

a·v
||a||·||v|| >

z√
2
√
d+2

. The angle between a and v is given

by φ(a, v) = cos−1
(

a·v
||a||·||v||)

)
for 0 ≤ φ(a, v) ≤ π.

Let φ0 < 1 be a small positive value and set γ = φ2
0/3 <

φ0. Using cos−1(1 − γ) ≤
√

3γ and cos−1
(

a·v
||a||·||v||

)
<

cos−1

(
z√

2
√
d+2

)
, it follows that φ(a, v) < φ0 if z√

2
√

d+2
=

1− φ2
0/3, i.e., z = (1− φ2

0/3)
√

2
√
d+ 2.

This yields a total probability P (φ(a, v) < φ0) > 1/2 ·
exp(−((1−φ2

0/3)2(2
√
d+2))) when choosing a vector v ran-

domly of N (0, 1). Let X denote the event φ(a, v) < φ0.

Setting n = 2 · exp((1−φ2
0/3)2(2

√
d+ 2)) · c0 log(N) accord-

ing to the Binomial distribution for a constant c0 we expect
at least c0 log(N) vectors v such that φ(a, v) < φ0. Using
the Chernoff bound for X ∼ B(n; p)

P (X ≤ k) ≤ exp

(
−

1

2p

(np− k)2

n

)
with k = 1, we get

P (X ≤ 1) ≤ exp

(
−1

2

(c0 log(N)− 1)2

c0 log(N)

)
≤ exp(−1

2
(c0 log(N)− 2))

= e ·N−c0/2 ≤ N−c0/2.

From here, it follows that when choosing 2 · exp((1 −
φ2
0/3)2(2

√
d+2))·c0 log(N) vectors v randomly fromN (0, 1),

the probability that at least one of them is such that
φ(a, v) < φ0 is at least 1− 1

Nc0/2 .


