
1

Detecting Plagiarism based on the Creation Process
Johannes Schneider, Avi Bernstein, Jan vom Brocke, Kostadin Damevski, and David C. Shepherd

Abstract—To this date, all methodologies for detecting plagia-
rism have focused on investigating the final digital “outcome”,
eg. a document or source code. Our novel approach takes the
creation process into account using logged events collected by
special software or by macro recorders found in most office
applications. We look at interaction logs of an author with the
software used for creation of the work. Detection relies on com-
paring histograms of command usages of multiple logs. A work is
classified as plagiarism, if its log deviates too much from logs of
“honestly created” works or if its log is too similar to another log.
The technique supports detecting plagiarism for digital outcomes
stemming from unique tasks such as thesis as well as equal tasks
such as assignments where the same problem sets are solved
by many students. Evaluation focuses on the latter case using
collected logs by an interactive development environment (IDE)
from more than 60 students for three programming assignments.

Index Terms—plagiarism detection, log analysis, distance met-
rics, histogram based detection, outlier detection of logs

I. INTRODUCTION

Prominent cases of plagiarism like the one of the former
German secretary of defense Guttenberg, who copied large
parts of his Ph.D. thesis, have helped in creating more public
awareness for this serious problem. In particular, persons
with decision power in politics and industry should display
high forms of integrity. To this end, a systematic eradication
of immoral behavior is needed already during education,
eg. reliable detection of plagiarism. Even though software
is available to support identification of plagiarism, it can
often be defeated by simple manipulation techniques such as
substituting words by synonyms, ie. rogeting. The reason being
that plagiarism detection software often only detects exact
matches of text. Therefore, we introduce a novel mechanism
that supports identification of fraudulent works such as thesis
or assignments. Our idea is to capture the creation process and
compare the generation process of individual works among
each other rather than just focusing on the final products.
The creation process is represented by a log comprising of
a sequence of events which are collected automatically during
the making of a digital product.

J. Schneider is with the Institute of Information Systems, University of
Liechtenstein, Liechtenstein.
E-mail: johannes.schneider@uni.li

A. Bernstein is with Department of Informatics, University of Zurich,
Switzerland.
E-mail: bernstein@uzh.ch

J. vom Brocke is with the Institute of Information Systems, University of
Liechtenstein, Liechtenstein.
E-mail: jan.vom.brocke@uni.li

K. Damevski is with the Department of Computer Science, Virginia
Commonwealth University, Richmond, VA, 23284, U.S.A.
E-mail: damevski@acm.org

D. Shepherd is with ABB Corporate Research, Raleigh, NC, 27606, U.S.A.
E-mail:david.shepherd@us.abb.com

Fig. 1. Log created using the macro recorder in Microsoft Word. The outcome
is shown on the right.

User behavior and, sometimes, internal processes of the
software used to make the digital product are tracked by
recording events. A simple example is shown in Figure 1. It
illustrates that logs typically contain much more information
than the final digital product, e.g. it contains the entire change
history of a document in chronological order. A log also is
more machine friendly to process, since it usually consists
of a sequence of events given in raw simple text format,
whereas a final product could be a text with different fonts
and colors or even a graphic. These characteristics lead to
several opportunities for plagiarism detection. Strengths and
limitations are presented in the discussion in Section VIII.
There are multiple architectures and technical options for
log creation (Section III) that lead to different detection and
cheating strategies (Section IV). For automatic plagiarism
detection, we propose mechanisms based on histograms of
events of a log (Section V). Though automatic detection is the
focus of this work, it might not yield definite results. Thus,
manual inspection might be necessary for which the main
ideas are stated in Section VI. For evaluation we focus on
programming assignments in software engineering in Section
VII. To the best of our knowledge the only reliable way
to avoid detection by our creation process based technique,
requires either detailed knowledge of the inner workings of
the creation software or a significant degree of manual work.
Thus, cheating is less attractive.

II. RELATED WORK

(Software) plagiarism has been discussed from the point
of view of students (and university staff) in [11], [17]. They
give a definition of plagiarism and discuss student awareness
of plagiarism. The work [11] also mentions that more than
80% of surveyed stuff check for plagiarism and about 10%
use dedicated software, while the others relies on manual
inspection.
The comprehensive survey [21] discusses plagiarism in general
and also three detection methods focusing on texts: document

2

source comparison (such as word stemming or fingerprinting),
search of characteristic phrases and stylometry (exploiting
unique writing styles of persons). A taxonomy for plagia-
rism focusing on linguistic pattern is given in [3]. They
conclude that current approaches are targeted to determine
“copy-paste” behavior but fail to detect plagiarism due to
presentation of ideas in different words. Though [21] men-
tions some (electronic) tools for detection, there are explicit
surveys covering these tools and systems [20], [5], [23], [25].
Discussed techniques involve computation of similarity for
documents, ie. attribute counting or cosine distance [16]. The
relationship between paraphrasing and plagiarism has been
looked at as well, eg. [23], [38]. Citation-based plagiarism has
also been studied widely, eg. [15], [24], [23]. This approach
uses proximity and order of citations to identify plagiarism.
Other techniques cover parse tree comparison (for source code)
or string tiling [35]. More recent work has identified pro-
grammers using abstract syntax trees with a surprisingly high
success rate despite obfuscation of code [8]. None of these
tools and methods takes the creation process into account.

For source code there are a variety of special techniques at
hand, eg. [4] introduces plagiarism detection of source code
by using execution traces of the final program, ie. method calls
and key variables. An API-based control flow graph is used
in [9] to detect plagiarism. A control flow graph represents
a program as nodes(statements) with an edges between two
nodes if there is a transition in the graph between the nodes.
API-based control flow graphs merge several statements to an
API call, which is used for feature extraction and then in turn
to build a classifier to detect plagiarism. The paper [37] focuses
on detecting plagiarism for algorithms. The paper relies on the
fact that there exist some runtime values which are necessary
for all implementations of the algorithm. Therefore, any mod-
ification of the algorithm will also contain these variables.
Detection of plagiarism for programming assignments stating
similarity metrics of source code has been investigated in
[28] together with an extensive experience report. Similarity is
based on counts and sequences of reserved words in common
among assignments.

A comprehensive survey of statistical methods to detect
cheating is given in [7]. In a multiple choice test a student
takes more time to answer a difficult question than a simple
question. Statistical response time methods [7] exploit this
effect, which is hard to capture for cheaters. We believe
that this also holds for programming and writing a thesis.
Methods addressing the intrinsic aspects of a given task have
also been proposed, eg. using latent semantic indexing for
text documents [2] and source code [13]. Such techniques
might also be applicable for log analysis. More generally,
existing insights on the knowledge generation process could
be used in our work as well, eg. general findings such as in
[27] or findings for specific tasks and practitioners such as
the writing process of novice researchers [31]. Our proposed
approach is more inductive, ie. driven by data, rather than
deductive relying on general insights of cognitive processes in
knowledge creation.
There are a variety of logging tools, eg. [36], [32], [18],
[33]. We decided in favor of Fluorite [36], since it gives

fine grained logging of events. Other tools [33] provides
less fine grained logging with better privacy guarantees and
gamification approaches, which is preferable for anonymous
usage data collection and evaluation [14]. Mouse movements
and events outside the IDE are not logged. Some tools can
replay sequences of events [32].

Papers such as [34], [1] use logs to analyze the learning
process of students, eg. [34] looked at novice students inter-
acting with a complex IDE. They investigated how certain
characteristics like compilation errors evolve with experience.
Students in need of help are identified in [1]. They employ
machine-learning using a variety of features. The only feature
of the code snippets they use is the number of steps taking
to solve a task of an assignment. For instance, they computed
what compilation errors occurred and how their distribution
changes with (more) experience of students. They identify
states during the evolution of the source code and also correlate
student performance with overall course performance. Other
work [6] identifies patterns using frequency and size of code
updates. They also perform in depth analysis of an assignment
using a simple language for robot programming.

The paper [30] shows that it is possible to identify users
based on the usage of Linux shell commands. Their techniques
could be helpful to detect copying of partial logs. The timing
between keystrokes [10] can serve as biometric data that
allows to identify users. This could be valuable in our context
as well. Authorship can also be traced by extracting a multi-
tude of features from text such as word richness, punctuation
etc.[19]. The work [26] provide an evaluation framework for
plagiarism detection focusing on text, eg. inserting random
text, changing semantic words. We also use random variations
in our creation of artificial logs.

III. DEFINITIONS AND SCOPE

Plagiarism is commonly defined as the “unjust
appropriation”, “theft and publication” of another author’s
creation including “language, thoughts, ideas, or expressions”
and the representation of it as one’s own. This could mean
copying paragraphs from the Internet without citation,
slightly modifying parts of a work of a fellow student for an
assignment, paying a third party to do the actual work and
so on. We mainly focus on the case that a creator attempts
to copy significant parts of the digital outcome by stealing
from another source. He or she might copy literally or create
a modified version of the original to avoid detection, eg.
by word substitution or even by changing the content in a
more complex way, eg. document structure or semantics. This
scenario covers the most appealing approach for a plagiarist,
ie. copying as much as possible with little modification. It
also includes more subtle approaches such as rewriting a
given outcome and thereby avoiding the (time-consuming)
process of deriving a solution for the given task. We do not
attempt to detect copying of small portions of a work except
if it contributes significantly to overall effort. For instance,
we handle the typical scenario, where a student attempts to
copy most of a course assignment or a thesis. Generally, we
do not detect copying of a small paragraph. However, if the

3

Creation software

Human

computer

interaction (HCI) Log Plagiarism

detection

Log and

digital outcome

submission

Event

Simulating

HCI

Simulating

creation

software

supporting logging

eg. text editor, IDE

Creator

Manual

copying

Fig. 2. Log creation process and three possibilities for cheating

paragraph is responsible for a large amount of work (eg. the
most difficult part of a programming assignment) and its lack
manifests in significant less time and effort (and thus in a
shorter or different log), we are likely to detect it.

A digital outcome for an assignment or a thesis consists of
files containing the final product such as formatted text of a
thesis or source code. It is made by a creation software such
as a programming IDE or a text processing software. The
digital outcome is accompanied by a log file, documenting
the creation process by a sequence of automatically logged
events. A log often allows to reconstruct the digital outcome,
i.e. the events in the log describe the creation process step
by step and they resemble all manual editing. In this case,
“replaying” the log yields the digital outcome and therefore, it
is not strictly necessary to submit a log as well as the digital
outcome. We assume both are submitted, since this helps
in plagiarism detection by comparing the digital outcome
stemming from replaying the event log and the submitted
digital outcome. The creation process can be captured either
by the creation software emitting events or by a general
purpose human computer interaction(HCI) recorder tracking
mouse and keystrokes. Both options are shown in Figures
2 and 3. The setup in Figure 3 for tracking HCI is more

Log and

digital outcome

submission

Simulating

HCI

Manual

copying

HCI logger

Creation software

without logging support

Fig. 3. Log creation by tracking human computer interaction directly

general and more widely applicable than relying on logs
from the creation software, since not all applications support
logging. However, many widely used tools such as Microsoft
Office and OpenOffice applications come with a recorder
for macros, i.e. logs, or they allow installation of plugins to
record user activity, e.g. programming IDEs such as Eclipse
or Visual Studio. Generally, logs stemming from the creation
software contain human computer interaction categorized
into specific events. For instance, a mouse click at a certain
position might become a command execution event if the
click was on a menu item. Additional events stemming
from internal processes might also be logged. Logs from
a creation software might contain more information than a

direct HCI recording. Thus, they are somewhat preferable for
detection, though both setups, i.e. tracking HCI (in Figure 2)
and logging done by the creation software (Figure 3) allow
for similar detection techniques. On the downside tracking
HCI raises privacy concerns, in particular, if interaction with
other applications than the creation software is also logged.
Therefore, we mainly discuss the first setup as shown in
Figure 2 and refer to a log as events stemming from the
creation software.

Fig. 4. Log created using a plugin in the Eclipse IDE

An event can either be triggered immediately by a human
interacting with the creation software, e.g. by executing a
specific command or by internal processes of the creation
software. Commonly used commands are related to navigation,
editing text (insert, replace, delete), selecting menu entries
(opening or saving files) etc. Exemplary events generated
by the creation software are ‘autosave’ events (logging
that a file was saved automatically), spell check completed
(indicating that a background process for checking all words
in the document hass finished), breakpoint hit events in a
programming IDE (saying that a program suspended execution
at a breakpoint). An event often consists of a timestamp,
the name of the event (typically being the command type)
and details about the event such as parameters. For instance,
“2015-12-08 10:00.00, InsertString, ’A’, position 100:20”
corresponds to a user pressing key ‘A’ while editing source
code at line 100 column 20. The exact content of events as
well as the kind of logged events might vary depending on
the creation software. Figure 1 and 4 show two examples of
log files originating from different applications.

We use the following notation throughout this work. The
set of all logs is denoted by L. A log L ∈ L consists of a

4

sequence of entries. The i-th entry li of log L corresponds
to a single logged command or event. It is a tuple consisting
of a timestamp ti, an event or command ci of a certain type.
By N(L, c) we denote the number of occurrences of command
type c in log L. We focus on commands triggered by a human
(rather than system generated events). The set of all command
types is given by T. The types in a single log L are given by
T(L). Let LU ⊂ L be the subsequence of L that contains only
commands of type from the set U ⊆ T .

IV. CHEATING AND DETECTION

We elaborate on basic detection mechanisms before defining
the challenges that they imply for a cheater. We also show
differences in detection of plagiarism originating from tasks
such as writing a (unique) thesis or doing the same assignment
as a set of students.

A. Detection Overview

Detection builds heavily upon two mechanisms. The first
relies on investigating whether the distribution of events orig-
inate from honest creation or plagiarizing. The second one
checks that the validity of the log, ie. that the log can have
been indeed produced by the creation software. Ideally, the
log can be “replayed” yielding the submitted digital outcome.
The key assumption is that plagiarizing a work results in a
different sequence and also distribution of events. For example,
plagiarism might lead to less edit events but more copy-and-
paste events. Our proposed detection relies on two dimensions,
namely, checking for frequencies of a command and used
command types. The histogram based technique relies on
frequency counts of event types extracted from each log.
It computes distances between logs for multiple samples of
event types. Thus, we verify: (i) whether a cheater uses
common event types as non-cheaters do and whether he did
not use uncommon command types; (ii) whether the usage is
approximately the correct number of times, ie. not too similar
to any other log or extremely dissimilar from most other logs.
In data mining terminology, we perform a nearest neighbor
search for identifying manipulated logs, e.g. by changing a
honestly created log. We also perform an outlier detection for
finding newly created logs stemming from plagiarized work.
Invalid logs are classified as originating from attempted ma-
nipulation, eg. plagiarism. For a log to be valid it must fulfill
semantical and syntactical correctness. Syntactical correctness
refers to obeying specific rules that determine how events
are represented in the log. We say that a log is semantically
correct, if it could have been created by the creation software.
For example, in an empty text editor an event for deletion
of a character ‘A’ is likely to yield a semantically incorrect
log, since the text editor is empty and, thus, the creation
software could not have emitted such an event. Generally, a
cheater must know the state of the creation software, which
determines feasible events as well as the impact of events. For
example, pressing the “return” key might move the cursor to
a new line. But, in case the software displays a dialog with
focus on the “cancel” button, such a key press might close
the dialog. It might be possible to verify a log by ‘replaying’

its events. Invalid logs are likely to result in an error message
while replaying. For instance, standard office tools come with
a recorder for macros. These macros can function as logs that
can be replayed.

B. Creating Forged Logs

We discuss the feasibility and effort for plagiarizing de-
pending on the system architectures as well as availability
of honestly created logs that could be used for forging. To
begin with, we elaborate on all three possibilities of cheating
as shown in Figure 2. Other options such as manipulating the
creation software or plagiarism detection software itself seem
significantly harder. Therefore, they are not discussed.

i) Manual Copying: The easiest method of cheating is by
manual interaction with the creation software. For instance,
a student might create a thesis by retyping large parts of
relevant text from a website with some rephrasing or just
copy-and-pasting. This is easy to do and it always yields a
semantically and syntactically correct log, but it might come
with a significant workload for the cheater and/or a high risk
of detection, if done carelessly – even if the digital outcome
itself does not show any signs of plagiarism. The distribution
of events in the log might deviate from logs of honestly
created works and, thus, disguise the cheater. Therefore, a
successful cheater must anticipate the distribution of events
that is typical for honestly created digital outcomes. He must
forge a log that is close to such a distribution. Essentially, a
cheater must perform roughly the same amount of interaction
with the creation software as a non-cheater and he must
interact in a similar way as non-cheaters. For example, for a
programming assignment he must perform a similar degree of
program testing and “debugging” that would not be needed if
he just wanted to change the structure of the code. For writing
a thesis he must perform a similar degree of navigation,
redo’s, undo’s and editing.
ii) Simulating HCI: A log can also be created indirectly
by simulating human computer interaction(HCI) with the
creation software. This requires special software that can
emit mouse movement and key press events. The goal for
the cheater is to create a log that appears non-forged in
a (partially) automatic manner rather than performing all
interaction manually. For example, a student might copy a
large part of text from another source. He could paste it into
the creation software resulting in a single “Paste” event in
the log that might appear suspicious. He might also use a
special tool that takes the copied text as input and simulates
HCI by sending key press and mouse movement events to the
creation software resulting in a more credible log. Automating
HCI is possible and an essential part of GUI testing [22]
and automation (as showcased by the macro functionality in
office applications). Recording screen coordinates of mouse
movements and clicks is sensitive to screen resolutions and
software configuration which reduces portability. As of now,
even by using an available recording and replay tool, a cheater
would have to configure the tool, e.g. to replace a single
paste command of text by single key presses of the letters
of the text, or to specify how navigation and editing events

5

should be created by such a tool. A key challenge is that the
cheater must be aware of the state of the creation software
and the events that are feasible in that state as well as their
effect. For instance, a ”cut text” operation is only available,
if indeed text was selected priorly. Typically, non-availability
would be indicated by a grey “cut” icon and menu item in
the GUI of the text editor. Clicking on such an icon or menu
item does not have any impact, in particular, the creation
software does likely not generate an event that is appended to
the log. Thus, a cheater attempting to simulate cut operations,
must make sure that the command is available, otherwise
he does not achieve his goal of appending to the log. In a
programming IDE a click on ”Start/Run program” results in
different user interfaces depending on whether the program
is compilable and executable or not. If it is not executable,
a dialog with an error message might be shown. If it is,
the program might run in the foreground and a toolbar with
several debug commands might appear, such as pausing the
program to investigate its internal state. If a cheater wants
to simulate debugging behavior, he must make sure that the
program is compilable.
Besides, though simulating HCI always yields a semantically
and syntactically correct log, replaying the log might yield
a digital product that is different from the submitted digital
outcome. Thus, detection software would identify the cheater.
A human can determine the availability of a command easily
by visual inspection of the GUI, but tools cannot easily do so
and rely on keeping track of the internal state of the creation
software. Though these challenges might be addressable, they
make forging a log automatically rather complex.

iii) Simulating the creation software: A cheater might also
create or alter the log of the creation software directly, if
he has access to it. In the simplest case the log is a human
readable text file that allows for straight forward manipulation.
A cheater might add events or change events in the log that
mimic sequences of events emitted by the creation software
for honestly created logs. Analogous for simulating HCI, the
cheater wishes to automatically manipulate the log file rather
than to edit it by hand. As of now, to the best of our knowledge
there are no tools that would allow automatic creation or
modification of such logs. The challenges are analogous as
for simulating HCI, i.e. the cheater must anticipate the internal
state of the software, otherwise the log does not yield the final
digital outcome when replayed. Even more, a manipulated
log might not even be semantically or syntactically correct,
resulting in an error message when being replayed. This
immediately reveals a forged log.

There are different types of system architectures determin-
ing whether logs are collected online or offline and whether
logs are created by software running on a device under the
creator’s control or not. The architecture determines the ease
with which logs can be changed. In the least secure setup
logs are created offline at a student’s laptop. If logs are not
encrypted and in text format the student can alter them before
submission. Thus, in such a setup a student might use all three
forms of cheating in Figure 2. In the most secure technical

configuration, a student uses the creation software on a device,
where he can neither access logs nor install any software that
allows simulating human computer interaction.

The availability of logs or recordings of HCI facilitates two
kinds of forging: i)‘Copy and Modify’: A cheater has access
to a valid log, eg. at least one (honestly created) log that
he manipulates before submitting it. To minimize effort, a
cheater might take a log of a fellow student and only perform
a small amount of changes. He might also use a recording
of HCI of a fellow student and alter the recording and then
replay it to generate a forged log. From the perspective of
detection both methods result in plagiarized logs that are
similar to the original log. ii) Generation from scratch: The
cheater does not have access to a log but potentially to (parts
of) the digital outcome, eg. source code from a fellow student
or the Internet, that he tries to plagiarize by incorporating it
in his own work.

C. Unique vs. Equal Tasks

Our detection relies on comparing multiple logs among each
other. If the same exercises are solved by many students, we
expect similar logs with some variation. Given that a task is
unique such as writing a thesis, we must rely on comparing
logs of multiple students each treating a different topic in
their thesis. Detection capability relies on the assumption
that writing a thesis conforms to a different process than
plagiarizing a thesis that is reflected in the logs, eg. less
editing. Detection is likely to be better if the thesis’ are similar
in expected effort and stem from people with a similar level
of education.

V. AUTOMATIC DETECTION BASED ON HISTOGRAMS

We compute frequency statistics for each log. These
are compared among each other. The counts of events for
each event type yield a histogram that is used for distance
computation among logs. If two logs have very similar
statistics or a log shows very dissimilar frequencies of usage
of commands from all others then the log is more likely
belonging to a cheater. The first case is likely a result of
copying a log and modifying it. The second is a result of
creating a log from scratch while copying (parts of) the
final digital outcome. We employ different metrics to detect
pairs of similar logs and outlying logs using some general
design considerations. The detection should be as robust as
possible to potential modifications of a cheater. In particular,
for similarity, changing a single command type should not
impact the metric too much, since it is relatively easy and
fast to (manually) increase the counts of certain command
types to an arbitrary length, eg. moving the cursor left and
right. For outlying logs, low usage of commands that are
very commonly found in honestly created logs are a strong
indicator for cheating.

We first discuss general aspects related to data preparation
followed by metrics for plagiarism detection.

6

A. Data preparation

Data preparation might involve data cleaning and data
transformation. Data cleaning encompasses removing entire
logs as well as cleaning the content of individual logs. It is
quite common that assignments or thesis are only partially
finished and handed-in either way. Such logs corresponding
might be removed, since a cheater is not likely to copy an
incomplete assignment resulting in a non-satisfactory grade.
They are often characterized by being of short length. If
left untouched, they could distort outlier detection, since
they do not resemble a proper complete solution process of
the assignment. For example, we provided a code skeleton.
Several students looked at the skeleton and did minor changes
but were far from any serious attempt to solve the task. Thus,
the logs contained a significant proportion of navigation but
relatively little editing or debugging. A cheater creating a log
with similar properties might escape detection if these logs
remain present.

The content of individual logs typically requires no clean-
ing, since it is generated automatically. Data transformation
could involve renaming of events, eg. we shortened several
very long command names. We also neglected all information
such as the timestamp of an event or parameters. We focused
only on the command type. We computed a histogram for each
log capturing the frequency of each command type. As we
shall see and discuss in the evaluation (see Figure 9) the dis-
tribution of the usages N(L, c) of a specific command c across
logs L ∈ L is skewed. We transformed the data using the Box-
Cox transform to get a more symmetric distribution. We added
the value ‘1’ to all values before transformation to handle the
case of zero counts, ie. the Box-Cox transform might otherwise
compute log 0, which is undefined. By B(L, c) we denote
the transformed value of 1 + N(L, c). Figure 10 gives some
insights showing the transformed distribution for frequent
command types. Less commonly used command types have
a peak at 0.

B. ‘Copy and Modify’ Detection

The goal of ‘Copy and Modify’ detection is to determine
if one log is an altered version of another. This is done by
computing the similarity between two logs, ie. the Pearson
product-moment correlation coefficient of two logs. Using
all command types for computation of the correlation might
not be robust against insertion or deletion of a few event
types. In the most extreme case, a cheater might alter the
frequency of a single command type to such an extent that an
otherwise equivalent log is not regarded as similar. Therefore,
we compute the correlation for randomly chosen subsets of
commands. For a pair of logs to be very similar it suffices
that the correlation for just one of the subsets is very similar.
There is a risk that if we pick too small subsets, ie. too few
event types or strongly dependent event types that by mere
chance the distance between two logs is small. However, as
discussed in the evaluation, this seems to be a minor concern.
There are only relatively few commands that occur in most of
the logs. Thus, it is important to choose command types for

correlation computation separately for each pair of logs rather
than just one subset for all logs. Otherwise, if a subset of rare
commands is chosen that only occurs in a few logs then many
logs will be classified as very similar, since many logs might
not contain any of the rare commands at all. Thus, to compute
the similarity of a pair of logs we only select commands that
occur in at least one of the two logs. Furthermore, choosing
the subset from one of the logs only, ignores the number
of different command types occurring in the other log. This
might lead to logs being judged as similar even though one
of them contains a significant number of additional event
types. Thus, we pick half of all command types from each log.

More formally, a subset S of commands is chosen
as follows for a pair L,L′ of logs: We pick half, ie.
|S|/2 = ssam./2, of all command types U ⊂ S uniformly at
random from log L, ie. T(L), and the other half U ′ ⊂ S from
T(L′) \ U . The entire subset S of command types contained
in the histogram is given by S = U ∪U ′. The Pearson-product
correlation ρ(L,L′, S) for a subset S ⊂ T(L) ∪ T(L′) of
command types is given by:

n(L) :=

∑
c∈S n(L, c)

|S|

n(L′) :=

∑
c∈S n(L

′, c)

|S|

ρ(L,L′, S) :=

∑
c∈S(n(L, c)− n(L)) · (n(L′, c)− n(L′))√∑

c∈S(n(L, c)− n(L))2 ·
√∑

c∈S(n(L
′, c)− n(L′))2

The choice of a subset and the similarity computation for it is
illustrated in Figure 5. In the figure, we chose two commands
of each log. The correlation was computed using just four
values per log, ie. one for each of the chosen command types.

A
U
T
O
G
E
N
::
:.
..

C
o
p
y
C
o
m
m
a
n
..
.

e
v
e
n
tL
o
g
g
e
..
.

e
d
u
.c
m
u
.s
c
..
.

o
r
g
.e
c
li
p
s
..
.

S
h
e
ll
B
o
u
n
d
..
.

In
s
e
r
tS
tr
i.
..

M
o
v
e
C
a
r
e
tC
..
.

S
e
le
c
tT
e
x
t.
..

P
a
s
te
C
o
m
m
a
..
.

A
s
s
is
tC
o
m
m
..
.

C
u
tC
o
m
m
a
n
d

U
n
d
o
C
o
m
m
a
n
..
.

F
il
e
O
p
e
n
C
o
..
.0

100

200

300

400

500

A
U
T
O
G
E
N
::
:.
..

C
o
p
y
C
o
m
m
a
n
..
.

e
v
e
n
tL
o
g
g
e
..
.

o
r
g
.e
c
li
p
s
..
.

S
h
e
ll
B
o
u
n
d
..
.

In
s
e
r
tS
tr
i.
..

M
o
v
e
C
a
r
e
tC
..
.

S
e
le
c
tT
e
x
t.
..

P
a
s
te
C
o
m
m
a
..
.

A
s
s
is
tC
o
m
m
..
.

C
u
tC
o
m
m
a
n
d

U
n
d
o
C
o
m
m
a
n
..
.

R
u
n
C
o
m
m
a
n
d

F
il
e
O
p
e
n
C
o
..
.0

50

100

150

200

250

300

Fig. 5. Illustration of similarity computation of two logs for ‘Copy and
Modify’ detection for one subset

Let S(L,L′) be the set of all chosen subsets S for a pair
of logs L,L′. The correlation cor(L,L′) of two logs is given
by the maximal Pearson-product correlation ρ(L,L′, S) of any
set S ∈ S(L,L′):

cor(L,L′) := max
S∈S(L,L′)

ρ(L,L′, S) (1)

7

Potential cheating candidates are indicated by larger correla-
tion, eg. we might report a fixed number of pairs of logs having
largest correlation among all pairs of logs from L.

C. ‘Generation from Scratch’ Detection

A cheater might not use an existing log for plagiarism, but
copy a final outcome (without the log). He might also enter
a modified solution manually or copy-and-paste it and then
edit it. In both cases, he creates a log for his plagiarized
work. Clearly, given enough effort and time any final outcome
such as thesis can be changed to another so that its structure
appears very dissimilar. However, the process of changing
such an outcome is typically different from solving the task
in an honest manner. For example, plagiarizing might be
characterized by activities such as a lot of word substitutions
or reordering, changing the layout of a work, and, in software
engineering, also permuting commands. We might expect less
incremental changes, rework, navigation, and, in software
development, also less debugging or navigating between files.
Therefore, if a log contains event of some command types
much more (or less) often than most other logs, this might be
an indicator for plagiarism.
Our measure, ie. the outlier score, is a weighted sum of
scores of individual commands. The weights are higher for
commands occurring in many logs at least once. The score
for the ‘PasteCommand’ is illustrated in Figure 6 together with
the Box-Cox transformed frequency distribution of the number
of usages per log. If the number of usages of the command
is common, ie. within one standard deviation from the mean,
then the outlier score is zero. It raises rapidly to almost one
when moving another two standard deviations away from the
mean. Next, we explain the outlier score in more detail and
afterwards motivate each choice for its computation.

0 20 40 60 80 100 120 140

Box-Cox Transformed #Usages

0

2

4

6

8

10

12

14

#
Lo

g
s

0.0

0.2

0.4

0.6

0.8

1.0

O
u
tl
ie
r
S
co

re

Fig. 6. Outlier score contribution of a single command

Roughly speaking, the count of a single command of some
log N(c, L) is outlying if it is much larger or smaller than
most other logs. To get a quantitative estimate, we used
the distribution of the Box-Cox transformed counts given by
B(c, L) and we computed the probability of obtaining a count
B(c, L) or an even less likely count. For that purpose, we
assumed that the resulting distribution of the transform is

normal. We computed the raw outlying probability praw(c, L)
of command type c of log L as follows: We assumed that
the count random variable B(c, L) is normally distributed
with probability density function p using the mean B(L) and
the standard deviation σ(B(L)). For a count value X we
computed the probability that a count is at least (or at most)
as large as X: Given that B(c, L) is larger than the average,
ie. B(L) :=

∑
L∈LB(c, L)/|L| we computed the probability

praw(c, L) := p(X > B(c, L)) for random variable X and
otherwise praw(c, L) := p(X ≤ B(c, L)).

B(L) :=
∑
L∈L

B(c, L)/|L| (2)

σ(B(L)) :=

√∑
L∈L(B(c, L)−B(L))2

|L|
(3)

praw(c, L) :=

{
p(X > B(c, L)) if B(c, L) > B(L)

p(X ≤ B(c, L)) otherwise
(4)

Figure 10 depicts the transformed distribution for frequent
command types. Assuming a normal distribution is generally
not correct for all command types though the majority of
commonly used commands seem to follow roughly a normal
distribution. For rarely used command types, which constitute
a significant proportion of all commands (see Figure 7), there
are many logs exhibiting a zero count and a few with counts
larger than zero. Fitting a normal distribution does not assign
enough probability mass to the zero value itself as well as val-
ues far from zero. It might be better to model the distribution
using a random indicator variable X stating whether the count
is zero (X = 0) or not (X = 1) together with a conditional
distribution p(Y |X = 1) that could be normal or more heavily
tailed. However, we found that this complexity in modeling is
not needed, since rarely used command types have only little
influence on the overall outlier score.
When looking at the count of a specific command B(c, L),
some derivation from the expected value is supposed to occur,
eg. for a standard normal distribution the standard deviation
from the mean is one. Therefore, one might not judge a log
as being more of an outlier than another log given that both
are within some limit of the mean. More precisely, we said
that all counts within a distance of one standard deviation
do not increase the outlier score, ie. the outlier score for a
count X ∈ [B(L)− σ(B(L)), B(L) + σ(B(L))] is zero. The
cumulative probability density of a value being smaller than
the lower limit or larger than the upper limit is equal, ie. given
by 0.16. We defined the unweighted outlier score out(c, L) of
command c of log L as follows:

out(c, L) :=

{
0 if B(c, L)−B(L) ∈ [−σ(B(L)), σ(B(L))]

1− praw(c, L)/0.16 otherwise
(5)

The division by 0.16 serves as normalization so that all values
between [0, 1] are possible.

The distribution of command type usages (Figures 7 and
8) shows that it is not uncommon that a command type is

8

used only by a few students. Intuitively, a log being the only
one using some command types, is likely to be an outlier
and, therefore, potentially part of plagiarism. We found that
also honestly created logs often have some unique command
types. In contrast, for forging a digital produce (e.g. rephrasing
words, changing layout etc.), standard editing operations seem
to suffice, i.e. the corresponding logs do not necessarily
contain special commands not contained in honestly created
logs. But, some command types that are common in honestly
created logs are not or less needed to disguise a plagiarized
work and vice versa. Therefore, we added weights for each
command stating how much a deviation from the mean indi-
cates cheating. Generally, the more often a command occurs
at least once in some log the larger its weight. Thus, a strong
deviation of counts from the mean of a command that occurs
in all logs seems a strong indicator for an outlier. We computed
the weight for a command c as the squared fraction of logs
containing the command. The squaring emphasizes the fact
that commands that are used not so often should not impact
the outlier metric heavily. The computation uses an indicator
variable I being one if the command c occurs in log L, i.e.
n(c, L) > 0:

I(n(c, L) > 0) :=

{
1 if n(c, L) > 0

0 otherwise
(6)

w(c) := (

∑
L∈L I(c, L)

|L|
)2 (7)

The definition yields weights in [0, 1].
The total outlier score for a log L is given by the normalized
sum of the contributions of each command:

out(L) :=

∑
c w(c) · out(c, L)∑

c w(c)
(8)

The larger the score the more likely a log is an outlier and,
thus, stemming from a dishonestly created work.

VI. MANUAL DETECTION

Automatic detection only gives cheating candidates with
varying degree of confidence. Manual inspection of logs can
improve clarity for doubtful cases. Our focus is mainly on
automatic detection but we also briefly mention possibilities
for manual inspection that we show-case in the evaluation.
They can be classified into using more sophisticated analysis
of the event logs, inquiring the creator and cross-validating
potential plagiarism using other techniques.
The histogram-based techniques based in Section V is very
general with little domain knowledge. It could be enhanced
by performing manual analysis, e.g. by visually assessing
histograms of several students and look for deviations or
similarities. Some commands are typically correlated, eg. a
larger number of “move cursor right” usually also implies
many “move cursor left” commands, “Insert string” correlates
with “Deletes” as well as relative counts of several commands,
eg. the amount of navigation should grow with the amount of
editing. Furthermore, one can check if necessary event types
were missing, extremely low or high, or if there are event
types that should not be in the log. In short, a more holistic

look at the histogram might be beneficial. One might also
compare histograms based on a subset of the entire log. This
increases sensitivity to spot certain behaviors and it also allows
to compare different phases of the creation process that are
characterized by different activities. For example, assume a
forged log is a result of appending to a valid log by editing of
a digital produce, e.g. by performing extensive rephrasing of
most of the text to mislead conventional plagiarism detection
tools. When looking at the distribution of the last part of such
a log, it might be characterized by a large amount of text
replacement events that was performed in a short amount of
time. A non-forged log is likely to contain relatively less re-
placements, but more navigation or inserts, since it seems more
common that either a student appended to the thesis to just
finish it or to read through it and fix typos or change individual
sentences. Aside from looking at the histograms, one might
use additional analysis using logs as mentioned in Section
VIII, e.g. looking for common subsequences to identify copies,
looking for pasted content from external applications, etc.
Contacting the creator of the work to inquire him about the
creation process is another option. For example, he should
be able to answer questions such as where we spent most
time on editing, in which order content was created etc. In
case, keystroke timings are available, one might also conduct
simple tests, like keystroke pattern analysis, e.g. check if the
timing between keystrokes is similar during the supervised test
is similar to timing seen in the submitted log [10]. A further
option would have been to also consider existing techniques
for verification, eg. to compute the similarity among the final
source code using the MOSS tool [29] or for a text document
one could check consistency of multiple works of the same
author by extracting features from both texts [19]. Finally,
one might also use techniques not related to creation logs to
validate that a potential cheater is indeed cheating. We refer
to the related work for such techniques.

VII. IMPLEMENTATION AND EVALUATION

A. Collected Data

We obtained logs using the Eclipse IDE with the Fluorite
logger plug-in [36] from more than 60 students for three
programming assignments. We conducted the same analysis
for all three assignments. We discuss the first of them in detail,
since all gave similar results. In Assignment 1 students were
given a skeleton of multiple files. They were supposed to write
roughly 100 lines of code.

Figure 7 shows the frequencies of commands of a certain
type. There are a few commands that are used very frequently,
related mainly to editing and navigation. Figure 8 shows how
often students use a certain command. About 10% of all
commands are used by all students and about 50% are used by
at most three students. Command usage might also be partially
unintentional, eg. by choosing a menu item by accident. The
usage of a particular command type per student varies a lot.
The box plot of the 15 most frequent event types is shown
in Figure 9. For a specific command the student at the 25%
percentile used it roughly a factor 2-15 less than the student
at the 75% percentile. Some of the submitted logs are rather

9

Command Type
10-1

100

101

102

103

104

105

Fr
e
q
u
e
n
cy
 o
f
T
o
ta
l
U
sa
g
e
s

Fig. 7. Distribution of total usages (by all students) for command types

Command Type
0

10

20

30

40

50

60

70

#
S
tu
d
e
n
ts
 U
si
n
g
 C
o
m
m
a
n
d

Fig. 8. Distribution of number of students using a command types

short and stem from incomplete assignments. Some submitted
logs also contain work not part of the assignments. We did
not filter these though they are likely to have an unpleasant
effect on the outlier detection result.

B. ‘Plagiarism’ Data
Dataset 1: All collected logs from students. It is used to
conduct a semi-automatic detection, i.e. identify potential
cheaters automatically and check if they are really cheaters
manually.

Dataset 2: An extension of Dataset 1 with synthetic data
created through modification from original logs without using
the IDE. The dataset should support addressing two questions.
First, we want to assess robustness of our detection with
respect to modification of logs, ie. what is the minimum
required change so that a log is not detected? Second, we
want to get an understanding of how much a normal log has
to be modified to be considered an outlier. To this end, each
single log was modified in two ways:
• Event type change: We vary the number of event types,

ie. we remove a certain percentage of all events of some
types (chosen uniformly at random) from the log. This
corresponds to the case, where a cheater is not using all
kinds of events, eg. due to copy-and-pasting of the final
outcome.

100 101 102 103 104

Problem Marker Chosen

Shell Size Changed

Copy

Paste

Move Cursor Up (with Arrow)

File Save

Move Cursor Left (with Arrow)

Move Cursor Down (with Arrow)

Move Cursor Right (with Arrow)

File Open

Select Text

Run

Assist (eg.Code Completion)

Delete Previous (Backspace)

Move Cursor (with Mouse)

Insert String

Fig. 9. Box plot of counts of 16 most frequent event types.

Problem Marker ...Shell Size Chan...CopyPaste

Move Cursor Up ...File SaveMove Cursor Lef...Move Cursor Dow...

Move Cursor Rig...File OpenSelect TextRun

Assist (eg.Code...Delete Previous...Move Cursor (wi...Insert String

Fig. 10. Distribution of counts of 16 most frequent event types after Box-Cox
transform.

• Event frequency distribution change: We alter the distri-
bution of events, ie. we increase or decrease the count
of events. Given a maximal change factor k we change
the count of each command type of a log as follows. We
choose a random number r ∈ [1, k] and with probability
one half we increase the count by a factor r with
probability one half we decrease the count by a factor
1/r. This is motivated by the fact that a cheater might
use certain commands more often or less often than most
of his peers, eg. more copy-and-paste, less undos/editing,
less debugging etc. In particular, this covers the most
appealing scenario for plagiarism: Taking an honestly
create log and appending to it by simply editing the digital
produce.

For each log and each change factor k we created 10 modified
versions of logs.

Dataset 3: This data set extends Dataset 1 by creating a plagia-
rized solution of an assignment using the IDE. We considered
several strategies to obtain a ‘fake’ log from scratch, ie.
without using an existing log, with increasing effort for the
cheater. Our strategies are similar to [12] which focuses on
Wikipedia articles.

10

• Copy-n-paste: Copying the source code (eg. from the
Internet) without modification or any additional activity,
such as running the code.

• Small Refactoring: Copying the source code, renaming a
few variables.

• Medium Refactoring: Copying the source code, renaming
several variables, changing some comments and running
the code. The amount of work performed is roughly a
factor ten less than the average log size.

• Large Refactoring: Copying the source code, renaming
most variables, changing a lot of comments, reordering
statements, making minor code changes and running the
code to test. The size of the log is slightly larger than the
average log size.

For each strategy we created three logs manually and we
considered 100 variations for each of the twelve manually
created logs by changing the event frequency by using a
maximal change factor 3 in a manner as described for the
event frequency alterations of Dataset 2.

C. Setup and Parameters

We ran our histogram-based detection on a PC (2.7 GHz
CPU, 8 GB RAM) on our collected data for all students for
all three assignments. For computing similarity between two
logs, we chose nsam. = 100 subsets of commands of size
ssam. = 2. We also investigated subset sizes ssam. of 2,4,8
and 16.
Experiment using Dataset 1: Objectives were to set the ground
truth for later experiments by identifying inadequate logs and
their impact (e.g. incompletely submitted logs) as well as to get
an understanding of actual data. In particular, Dataset 2 builds
upon the assumption that there are no cheaters in Dataset 1.
We identified logs that appear as outliers or very similar due to
various reasons ranging from cheating to erroneous handling of
logs by students, eg. not submitting all log data or an excessive
amount (including work beyond the assignments).

First, we looked for cheaters in the original dataset. A
natural choice is to assume that the pair(s) of students with
minimal distance (respectively maximal distance) are cheaters
for the correlation measure (1) and those with the largest
outlier score (8). We manually inspected the ten most similar
pairs of logs and the ten most outlying logs.
Experiment using Dataset 2: The goal was to see how sensi-
tive the detection is with respect to deviation of an existing
log or the set of all logs. For each log, we created a modified
log and then we ran the detection algorithm including all
original logs and the modified log. Thus, for each modified
log we obtain a correlation score (1) and an outlier score (8).
An instructor might have a small time budget to check for
plagiarism that he uses to investigate a few high risk candidates
for cheating. Therefore, we say that a cheater was successfully
detected, if his or her log is among the five most similar
logs (for a cheater that copies and modifies a log) or among
the five most dissimilar logs (for a cheater that creates a log
from scratch). We computed which percentage of faked logs
(of all students) are detected. The detection capability was
assessed for both kinds of synthetic data, ie. removing some

event types completely and changing the distribution of events
(more gradually).
Experiment using Dataset 3: The goal was to investigate
whether the detection can detect logs that are created from
scratch. As for Experiment 2, we added each of the created
(cheating) logs to the entire set of logs and tested whether its
outlier score or correlation score ranks among the five highest.

D. Results

The entire computation took less than one hour.
Parameters: The results of all assessments was best for ssam =
2. This is no surprise, since in case a cheater does not alter
the frequency of all command types, it is quite likely that
the correlation is maximal, ie. 1 due to the choice of two
commands having the exact same counts. If we pick more
commands than two then it becomes more likely that command
types have different counts, yielding smaller correlation.
Results Experiment 1: The distribution of the distances of
original logs is shown in Figures 11 and 12. Figure 11 shows
the correlation scores used to identify copies of an assignment,
ie. cor(L,L′) (1). Outlier scores, ie. out(L,L′) (8), are shown
in Figure 12. One might observe a large gap between distances
of cheaters and non-cheaters. The larger a gap the more
suspicious a work. Due to strong variations in behavior among
individual students gaps are expected. For the original dataset,
we judged the ten most similar pairs of logs to be created
by different students. We also found the ten most dissimilar
logs to be logs that seem to stem from students solving the
assignment in an honest manner. Thus, we concluded that
there are very likely no cheaters. Some logs did not provide
a proper solution to the assignment, ie. students gave up and
submitted incomplete assignments. We did not further check
such logs for plagiarism. We employed several checks as stated
in Section VI. We looked at the distribution of commands of
each log with respect to others, eg. we created a figure for
each log L as Figure 9 but containing more event types and
highlighted the counts for log L. We did this also for partial
logs, but did not find any suspicious patterns.

0.80 0.85 0.90 0.95 1.00

Correlation Score

0

1

2

3

4

5

6

7

8

Fr
e
q
u
e
n
cy

P
o
te
n
ti
a
l
C
h
e
a
te
rs

Fig. 11. Histogram of pair-wise histogram distances cor(L,L′). The red line
shows the threshold for being a potential cheater.

11

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Outlier Score

0

1

2

3

4

5

6
Fr
e
q
u
e
n
cy

P
o
te
n
ti
a
l
C
h
e
a
te
rs

Fig. 12. Histogram of pair-wise histogram distances out(L,L′). The red line
shows the threshold for being a potential cheater.

Results Experiment 2: When adding synthetically created
logs, we found the following. In summary, for both data sets
we witnessed an expected trade-off: The more a log of a
student is distorted the less likely it is detected as being a
copy but the more likely it is being detected as outlier.
Detection of modified copies: When removing 90% of all
event types (see Figure 13) or change event counts by a factor
of up to 10 (Figure 14), we still detect about 90% of copied
and modified logs as plagiarism. The high detection rate stems
from the fact that it suffices to find a pair of command
types that were not modified. This chance is relatively high
even if many command types are altered: Say, we removed
90% of command types for a log and left the count of the
other 10% unchanged. For computation of similarity we pick
one command type from the original and modified log with
count larger zero. The one from the modified log occurs in
the original, but the one from the original log only occurs
in modified log with 10% probability. This gives a 10%
probability for one subset that the counts are identical, i.e.
perfect correlation. If we modify counts by a random factor
[0, k] then there is always a certain probability that a few
command types are altered by a rather small factor which
results in a high detection rate.
Detection of artificially created copies: Outlier detection re-
quires relatively large changes of frequencies (see Figure
14). When modifying a log created by an honest student,
we must change it beyond the variance across all logs first
before it becomes an outlier. Given the fact that logs vary
strongly, partially due to incomplete or incorrect logs (see
Section VII-A), the change required is also significant, ie.
when changing command execution counts by a factor of 5,
we detect about 40% of logs as outliers. For removing event
types similar reasoning applies, but detection seems to work
better because removing a few frequent event types that occur
in most logs has a strong impact on the outlier score. We
classify about 90% of logs as outliers, if they lack 50% of
events, while being otherwise identical to one of the logs.
Results Experiment 3: Detection worked very well in all
cases (Figure 15). This is not surprising, since the logs
stemming from plagiarized work might lack some frequently

0 10 20 30 40 50 60 70 80 90 100
Removed Event Types [%]

0

20

40

60

80

100

D
e

te
ct

e
d

 C
h

e
a

te
rs

 [
%

]

Modified Copies
Artificial logs(Outlier)

Fig. 13. Plot of fraction of detected faked logs for event type change.

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
Max. Change Factor for Event Counts

0

20

40

60

80

100

D
e
te
ct
e
d
 C
h
e
a
te
rs
 [

%
]

Modified Copies
Artificial logs(Outlier)

Fig. 14. Plot of fraction of detected faked logs for event frequency distribution
change).

used commands entirely or to a large extend, eg. commands
for opening files, edits (delete, undo, selecting of text),
navigation (switching between files), saving,running the code.

Though our results seem very encouraging, we do not want
to hide limitations as discussed in the next section.

C
o
p
y
P
a
st
e

R
e
fa
ct
o
r

S
m
a
ll

R
e
fa
ct
o
r

M
e
d
iu
m

R
e
fa
ct
o
r

La
rg
e

0

20

40

60

80

100

C
h
e
a
te
rs
 i
d
e
n
ti
fi
e
d
 [
%
]

Fig. 15. Detection of cheaters for variations of logs created using different
approaches.

12

VIII. DISCUSSION AND FUTURE WORK

We mention advantages and disadvantages of using the cre-
ation process as well as future work that targets on improving
automatic detection and facilitating manual inspection of logs.

A. Strengths and Weaknesses

We identified several reasons, why plagiarism detection
based on logs is attractive:
• Amount of information: Logs typically contain much

more information than the final product, since they usu-
ally implicitly include the final work as well as all actions
and changes throughout the making of the product such
as saving or printing. Since they rely on more informa-
tion, logs enable potentially more accurate methods of
detection. For that reason forging a log requires more
effort than forging the final product. Our approach forces
cheaters not only to modify (copied) content as is required
for traditional methods, but it also demands them to
understand and mimic the creation process.

• Complexity of log forging: Creating a forged log re-
quires in depth understanding of the log creation software.
Log entries often depend on internal processes that are
hard to predict, e.g. the exact time of automatic software
updates or the number of lines that result from inputting
a text in a text editor.

• Novel detection techniques: A whole set of new tech-
niques from data mining based on outlier detection or
nearest neighbor approaches can support the plagiarism
detection based on logs. Our technique is data-driven
with direct comparisons among a set of logs rather than
relying on expert input or dedicated rules. This makes
it very flexible, ie. easily usable for logs stemming from
different programs. We might also detect plagiarized work
that other techniques focusing on the final product fail to
identify.

• Structure of logs: In contrast to the digital outcome that
might appear as ‘unstructured’ data such as text from a
data science perspective, logs appear as structured data.
This allows for easier analysis.

Other potential advantages are that logs can also be used for
other purposes that might increase learning. They could be
used to give students feedback in an automated manner that
allows them reflect on their behavior and capabilities as well
as to recommend functions used by fellow students. The fact
that logs are created might also encourage students to work
more focused.

Log based detection also comes with certain weaknesses
compared to conventional plagiarism detection techniques.
If logs are very similar, the odds of a false positive seem
rather small. There is a higher risk of false positives for
students that behave differently from the majority of students.
For example, if a student is very smart and requires much
less rework than other students, he risks being classified as
potential cheater. The same holds for students that perform
an extra-amount of editing to improve the quality of their
work significantly beyond average. Therefore, our detection

technique often requires manual interaction, eg. examining of
logs that seem to be forged. Though this might also hold
for conventional techniques, the concept of logs might seem
harder to grasp and assess for an instructor – at least in an
initial phase.

We require that students collect and submit logs. In our
setup, we also require students to install a plugin for recording
events. Installation of the plugin took less than 5 minutes and
submission per log less than 2 minutes. As of now, students
had to disable the logging, if they worked on private projects.
Both of these limitations could be reduced (or eliminated).
For instance, one might install a private (without the logging
plugin) and university version (with the logging plugin) of the
software.
Furthermore, students have to use a particular software that
supports logging for creating their work. In practice, it is
not uncommon that students are already forced to use certain
applications, eg. templates for thesis might only be available
for a particular text editor or a course might demand to
submit project files from a particular editor that was also
used in tutorials. In principle one might support multiple
applications but this increases effort for the lecturer or use
a HCI recorder. Though many applications support logging,
the detail of such logs differs significantly. This might limit
the possibility of replaying a log to create the digital outcome.
For example, whereas the macro recorder in Microsoft Excel
logs mouse clicks in a spreadsheet, the recorder in Microsoft
Word only logs clicks on Buttons and keystrokes. In the first
case, the (final) spreadsheet can be created by replaying the
log, in the second case of Word one might check the log for
semantical correctness by replaying it, but it might not be
possible to create the final document by replaying the log.
Still, also in the second case the presented plagiarism detection
techniques can be employed using the in-built recorder to
create logs. However, a cheater might forge logs more easily, if
no additional means are taken to check whether the submitted
log corresponds to the submitted digital outcome.

B. Possible Improvements

Our histogram-based detection could be improved. There
are many more kinds of techniques such as identifying a
specific cheating behavior based on rules. We briefly discuss
copy-and-paste and paraphrasing. Typically, copying occurs
outside the creation software, eg. in a web-browser, and the
pasting of text or images occurs within the creation software.
A large amount of pasting (both in frequency and quantity)
might be an indicator of cheating. Furthermore, inserting a lot
of text in a short amount of time with relatively little editing,
eg. delete events, might be an indicator of paraphrasing.
Fingerprinting of keystrokes [10] is another way to identify
forged logs. More generally, one could improve the detection
mechanism to incorporate timing behavior of events. One
might also look at (short) sequences of events. For example,
one might pick a sequence that seems unique in a log (any
sufficiently long sequence is unique) and search for this
sequence in other logs.
Though all techniques for plagiarism detection apply to any

13

kind of digital outcome, we have evaluated our technique
on programming assignments conducted in a complex IDE.
The process and tools used for programming are arguably
more complex than those used to create text documents
for assignments that involve merely expressing ideas and
summarizing work without implementation. For example,
activities such as debugging do not occur in ordinary text
processing. Essentially, this results in a reduced set of
commands that are used when creating the digital outcome.
Thus, forging a log created in a simple tool with a less diverse
command set might seem easier. This might be (partially)
compensated by using more advanced detection techniques.
In particular, histograms using short sequences of events
rather than single commands are plausible option.
We focused on assignments that are characterized by many
students solving the same task. For thesis, in contrast, students
work on different topics. Thus, logs of assignments might
appear more homogeneous than logs of thesis. Homogeneous
logs imply that a cheater has less options to forge a log that
is not detected, since homogeneous logs are characterized
by little variance in usage statistics. However, thesis also
adhere to a common structure and also have specifics of the
creation process. Furthermore, they are significantly longer,
resulting in longer log files. Here, an approach that examines
sequences of events related to a section of a thesis, such as
literature review or introduction, rather than a single large log
might improve detection accuracy.

Whereas simple cheating attempts involving copy-and-
paste and some textual changes are easily detected, currently,
we do not protect well against the case where a student
manually enters text and simulates the creation process more
thoroughly. For instance, a cheater might copy-and-paste text
and then conduct artificial editing of the text. If the amount of
editing and way of editing is similar to other logs, a cheater
might well escape detection. However, without automatic
generation of logs the manual work a student must invest
significantly increases compared to work required to just
altering the final outcome. The amount of work (measured
in interactions with the tool) seems to be in the order of
magnitude of peers that behave honestly.

To further improve detection and to support the inspection of
logs, we envision a tool that visualizes the creation process in
an intuitive manner. This should allow a skilled person, such
as a supervisor of a thesis or a teaching assistant, to easily
identify whether a semantically correct log, is likely forged
or not, ie. generated or modified by an automatic tool (or
manually). For instance, if a tutor detects that a rather difficult
part of the work was done fairly quickly but other simple parts
required a lot of time, this could make him suspicious. Such
a tool might in particular help to avoid false-positives, ie. to
gather evidence that people accused of plagiarism are indeed
guilty.

IX. CONCLUSIONS

Cheating has always been an issue in- and outside education.
We have contributed to remedy this problem by propos-

ing automatic identification of ‘likely’ cheaters. Our novel
approach requires collecting logs rather than just the final
digital result, which is readily supported by several programs
(with appropriate plug-ins). Ideally, our detection technique is
combined with other techniques relying on analyzing the final
“digital” outcome. Currently, this would make cheating very
time consuming and rather unattractive. However, as soon as
circumventing log based detection is supported by automatic
tools, this might change. Thus, as in other domains, catching
offenders will remain a “cat-and-mouse” game. But this is a
game that must be played to counteract incentives for cheating.
It is necessary to ensure that cheaters are not among the
graduates of universities obtaining powerful positions where
misconduct can harm large parts of society. We see this work
as one step in this direction.

We would like to thank YoungSeek Yoon (author of
Fluorite[36]) for valuable contributions.

REFERENCES

[1] A. Ahadi, R. Lister, H. Haapala, and A. Vihavainen. Exploring machine
learning methods to automatically identify students in need of assistance.
In Proc. of Conf. on Int. Computing Education Research, pages 121–130,
2015.

[2] M. Alsallal, R. Iqbal, S. Amin, and A. James. Intrinsic plagiarism
detection using latent semantic indexing and stylometry. In Int. Conf. on
Developments in eSystems Engineering (DeSE), pages 145–150, 2013.

[3] S. M. Alzahrani, N. Salim, and A. Abraham. Understanding plagiarism
linguistic patterns, textual features, and detection methods. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 42(2):133–149, 2012.

[4] V. Anjali, T. Swapna, and B. Jayaraman. Plagiarism detection for java
programs without source codes. Procedia Computer Science, 46:749–
758, 2015.

[5] A. Bin-Habtoor and M. Zaher. A survey on plagiarism detection systems.
Int. Journal of Computer Theory and Engineering, 4(2):185–188, 2012.

[6] P. Blikstein, M. Worsley, C. Piech, M. Sahami, S. Cooper, and D. Koller.
Programming pluralism: Using learning analytics to detect patterns in
the learning of computer progr. Journal of the Learning Sciences,
23(4):561–599, 2014.

[7] T. Bliss. Statistical methods to detect cheating on tests: A review of the
literature. National Conference of Bar Examiner (NCBE), 2012.

[8] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Ya-
maguchi, and R. Greenstadt. De-anonymizing programmers via code
stylometry. In USENIX Security Symposium, pages 255–270, 2015.

[9] D.-K. Chae, J. Ha, S.-W. Kim, B. Kang, and E. G. Im. Software plagia-
rism detection: a graph-based approach. In Proc. of Conf. on Information
& knowledge management (CIKM), pages 1577–1580, 2013.

[10] T.-Y. Chang, C.-J. Tsai, Y.-J. Yang, and P.-C. Cheng. User authentication
using rhythm click characteristics for non-keyboard devices. In Proc.
of Conf. on Asia Agriculture and Animal (IPCBEE), volume 13, pages
167–171, 2011.

[11] D. Chuda, P. Navrat, B. Kovacova, and P. Humay. The issue of (software)
plagiarism: A student view. IEEE Transactions on Education, 55(1):22–
28, 2012.

[12] P. Clough and M. Stevenson. Developing a corpus of plagiarised short
answers. Language Resources and Evaluation, 45(1):5–24, 2011.

[13] G. Cosma and M. Joy. An approach to source-code plagiarism detection
and investigation using latent semantic analysis. IEEE Transactions on
Computers, 61(3):379–394, 2012.

[14] K. Damevski, D. Shepherd, J. Schneider, and L. Pollock. Mining
sequences of developer interactions in visual studio for usage smells.
IEEE Transactions on Software Engineering, 99:1–14, 2016.

[15] B. Gipp and N. Meuschke. Citation pattern matching algorithms for
citation-based plagiarism detection. In Proc. of symposium on Document
engineering, pages 249–258, 2011.

[16] M. Jiffriya, M. A. Jahan, H. Gamaarachchi, and R. G. Ragel. Accel-
erating text-based plagiarism detection using gpus. In Int. Conf. on
Industrial and Information Systems (ICIIS), pages 395–400, 2015.

[17] M. Joy, G. Cosma, J. Y.-K. Yau, and J. Sinclair. Source code plagiarisma
student perspective. IEEE Transactions on Education, 54(1):125–132,
2011.

14

[18] M. Kersten and G. C. Murphy. Using task context to improve program-
mer productivity. In Proc. of symposium on Foundations of software
engineering, pages 1–11, 2006.

[19] J. Li, R. Zheng, and H. Chen. From fingerprint to writeprint. Commu-
nications of the ACM, 49(4):76–82, 2006.

[20] R. Lukashenko, V. Graudina, and J. Grundspenkis. Computer-based
plagiarism detection methods and tools: an overview. In Proc. of the
int. conference on Computer systems and technologies, pages 40–, 2007.

[21] H. A. Maurer, F. Kappe, and B. Zaka. Plagiarism-a survey. Journal of
Universal Computer Science, 12(8):1050–1084, 2006.

[22] A. M. Memon. Gui testing: Pitfalls and process. IEEE Computer,
35(8):87–88, 2002.

[23] N. Meuschke and B. Gipp. State-of-the-art in detecting academic
plagiarism. Int. Journal for Educational Integrity, 9(1), 2013.

[24] N. Meuschke, B. Gipp, C. Breitinger, and U. Berkeley. Citeplag: A
citation-based plagiarism detection system prototype. In Proc. of Int.
Plagiarism Conference, 2012.

[25] M. Novak. Review of source-code plagiarism detection in academia. In
Conv. on Inf. and Com. Tech., Electronics and Microel., pages 796–801,
2016.

[26] M. Potthast, B. Stein, A. Barrón-Cedeño, and P. Rosso. An evaluation
framework for plagiarism detection. In Proceedings of the 23rd interna-
tional conference on computational linguistics: Posters, pages 997–1005.
Association for Computational Linguistics, 2010.

[27] J. A. Reither. Writing and knowing: Toward redefining the writing
process. College English, 47(6):620–628, 1985.

[28] F. Rosales, A. Garcı́a, S. Rodrı́guez, J. L. Pedraza, R. Méndez, and
M. M. Nieto. Detection of plagiarism in programming assignments.
IEEE Transactions on Education, 51(2):174–183, 2008.

[29] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local
algorithms for document fingerprinting. In Proceedings of the 2003
ACM SIGMOD international conference on Management of data, pages
76–85. ACM, 2003.

[30] M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M. Theus, and
Y. Vardi. Computer intrusion: Detecting masquerades. Journal of
Statistical science, pages 58–74, 2001.

[31] J. Shah, A. Shah, and R. Pietrobon. Scientific writing of novice
researchers: what difficulties and encouragements do they encounter?
Academic Medicine, 84(4):511–516, 2009.

[32] C. Simmons. Codeskimmer: a novel visualization tool for capturing,
replaying, and understanding fine-grained change in software. http://
hdl.handle.net/2142/44125, 2013.

[33] W. Snipes, A. R. Nair, and E. Murphy-Hill. Experiences gamifying
developer adoption of practices and tools. In Companion Proc. of the
36th International Conference on Software Engineering, pages 105–114,
2014.

[34] A. Vihavainen, J. Helminen, and P. Ihantola. How novices tackle their
first lines of code in an ide: analysis of programming session traces. In
Proc. of the Int. Conf. on Computing Education Research, pages 109–
116, 2014.

[35] M. J. Wise. Yap3: improved detection of similarities in computer
program and other texts. In ACM SIGCSE Bulletin, volume 28, pages
130–134, 1996.

[36] Y. Yoon and B. A. Myers. Capturing and analyzing low-level events from
the code editor. In Proc. of the 3rd SIGPLAN workshop on Evaluation
and usability of programming languages and tools, pages 25–30, 2011.

[37] F. Zhang, Y.-C. Jhi, D. Wu, P. Liu, and S. Zhu. A first step towards
algorithm plagiarism detection. In Proc. of the Int. Symposium on
Software Testing and Analysis, pages 111–121, 2012.

[38] M. Zurini. Stylometry metrics selection for creating a model for evalu-
ating the writing style of authors according to their cultural orientation.
Informatica Economica, 19(3):107, 2015.

Johannes Schneider is an assistant professor in data
science at the University of Liechtenstein. His main
research interests are data mining applications and
methods.

Kostadin Damevski is an assistant professor at
the Deparment of Computer Science at Virginia
Commonwealth University. His research focuses on
software maintenance and empirical software engi-
neering, applied to a variety of domains.

David C. Shepherd is an assistant professor at
the Department of Computer Science at Virginia
Commonwealth University. His research focuses on
software maintenance and empirical software engi-
neering, applied to a variety of domains.

Avi Bernstein is a professor and heads the Dy-
namic and Distributed Information Systems Group
in the Department of Informatics at the University
of Zurich, Switzerland. His research interests include
supporting organizational processes with focus on
data mining, crowdsourcing and the semantic Web.

Jan vom Brocke is Professor for Information Sys-
tems and Hilti Chair of Business Process Manage-
ment. His research focuses on IT-enabled business
innovation and IT-driven business transformation.

